liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Omic Network Modules in Complex diseases
Linköping University, Department of Physics, Chemistry and Biology, Bioinformatics. Linköping University, Faculty of Science & Engineering.
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Biological systems encompass various molecular entities such as genes, proteins, and other biological molecules, including interactions among those components. Understanding a given phenotype, the functioning of a cell or tissue, aetiology of disease, or cellular organization, requires accurate measurements of the abundance profiles of these molecular entities in the form of biomedical data. The analysis of the interplay between these different entities at various levels represented in the form of biological network provides a mechanistic understanding of the observed phenotype. In order to study this interplay, there is a requirement of a conceptual and intuitive framework which can model multiple omics such as genome, transcriptome, or a proteome. This can be addressed by application of network-based strategies.

Translational bioinformatics deals with the development of analytic and interpretive methods to optimize the transformation of different omics and clinical data to understanding of complex diseases and improving human health. Complex diseases such as multiple sclerosis (MS), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and non-small cell lung cancer (NSCLC) etc., are hypothesized to be a result of a disturbance in the omic networks rendering the healthy cells to be in a state of malfunction. Even though there are numerous methods to layout the relation of the interactions among omics in complex diseases, the output network modules were not clearly interpreted.

In this PhD thesis, we showed how different omic data such as transcriptome and methylome can be mapped to the network of interactions to extract highly interconnected gene sets relevant to the disease, so called disease modules. First, we selected common module identification methods and assembled them into a unified framework of the methods implemented in an Rpackage MODifieR (Paper I). Secondly, we showed that the concept of the network modules can be applied on the whole genome sequencing data for developing a tested model for predicting myelosuppressive toxicity (Paper II).

Furthermore, we demonstrated that network modules extracted using the methylome data helped identifying several genes that were associated with pregnancy-induced pathways and were enriched for disease-associated methylation changes that were also shared by three auto-immune and inflammatory diseases, namely MS, RA, and SLE (Paper III). Remarkably, those methylation changes correlated with the expected outcome from clinical experience in those diseases. Last, we benchmarked the omic network modules on 19 different complex diseases using both transcriptomic and methylomic data. This led to the identification of a multi-omic MS module that was highly enriched disease-associated genes identified by genome-wide association studies, but also genes associated with the most common environmental risk factors of MS (Paper IV).

The application of the network modules concept on different omics is the centrepiece of the research presented in this PhD thesis. The thesis represents the application of omic network modules in complex diseases and how these modules should be integrated and interpreted. In particular, it aimed to show the importance of networks owing to the incomplete knowledge of the genes dysregulated in complex diseases and the contribution of this thesis that provides tools and benchmarks for the methods as well as insights into how a network module can be extracted and interpreted from the omic data in complex diseases.

Abstract [sv]

Biologiska system består av gener, proteiner och andra biologiska molekyler, liksom interaktioner mellan dessa komponenter. Förståelse av en given fenotyp, funktion av en cell eller vävnad, etiologi av sjukdomar eller cellulär organisation kräver exakta mätningar av uttrycksprofilerna för dessa molekyler, vilket ger upphov till enorma mängder av biomedicinska data. Analys av biomedicinska data tillåter oss att förklara viktiga funktioner i interaktionerna som leder till en mekanistisk förståelse av den observerade fenotypen. Samspelet mellan olika komponenter på olika nivåer kan representeras i form av biologiska nätverk, till exempel protein-protein interaktioner (PPI). Nätverk ger en konceptuell och intuitiv ram för att modellera olika komponenter i flera omik-data, såsom transkriptom. De topologiska egenskaperna hos sjukdomsassocierade gener varierar signifikant från sjukdom till sjukdom.

Translationell bioinformatik handlar om utveckling av analytiska och tolkningsmetoder för att omvandla omik-data till förståelsen av komplexa sjukdomar. Komplexa sjukdomar som multipel skleros, reumatoid artrit och lungcancer är några av de sjukdomar som antas vara resultat av underliggande störningar i omik nätverken. Även om det finns många metoder för att modellera interaktioner mellan omik-data vid komplexa sjukdomar saknas det fortfarande tydlighet i hur de resulterande nätverksmodulerna ska tolkas.

I denna doktorsavhandling visade vi hur olika omik-data som transkriptom och metylom kan användas överlagrat på nätverket av proteininteraktioner och att extrahera tätt sammankopplade nätverksstrukturer av relevans för sjukdom, så kallade sjukdomsmoduler. I den första artikeln gjorde vi ett urval av de mest förekommande metoder för identifiering av sjukdomsmoduler och implementerade dessa i ett R-paket MODifieR, som erbjuder en lättanvänd gemensam struktur för olika metoder, samt möjlighet att kombinera moduler från olika metoder. I den andra artikeln visade vi hur nätverksmodulskoncept kan tillämpas på data från helgenomsekvensering för att utveckla en modell för prediktion av myelosuppressiv toxicitet i icke-småcellig lungcancer.

I tredje artikeln demonstrerades ytterligare en framgångsrik tillämning av nätverksmoduler som användes för att identifiera gener som är associerade med biologiska "pathways" samt sjukdomsassocierade metyleringsförändringar relaterade till multipel skleros, reumatoid artrit och systemisk lupus erythematosus, där sjukdomskopplingar till graviditet undersöktes.

Sedan utvärderades de omiska nätverksmodulerna på 19 olika komplexa sjukdomar genom att använda både transkriptom och metylom data. Vidare identifierade vi också en multi-omik modul i multipel skleros, med signifikant koppling till sjukdomsriskfaktorer genom att utnyttja genomisk överensstämmelse, dvs att flera omik ska ge höga genöverlapp.

Tillämpningen av nätverksmodulerna som ett koncept för att koppla omikdata till sjukdomsmekanismer är kärnan i forskningen som presenteras i denna doktorsavhandling. I synnerhet syftade den till att visa betydelse av hur nätverksomik-koncept kan bidra till kunskap om gener som är dysreglerade vid komplexa sjukdomar för att förstå sjukdomsmekanismer. Denna avhandling ger också verktyg och riktmärken för metoder och insikter i hur en nätverksmodul kan extraheras och tolkas från omik-data vid komplexa sjukdomar.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2021. , p. 72
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2114
National Category
Bioinformatics and Computational Biology
Identifiers
URN: urn:nbn:se:liu:diva-172651DOI: 10.3384/diss.diva-172651ISBN: 9789179297176 (print)OAI: oai:DiVA.org:liu-172651DiVA, id: diva2:1518087
Public defence
2021-02-19, Online through Zoom (contact mika.gustafsson@liu.se or badte992@student.liu.se) and ACAS, A Building, Campus Valla, Linköping, 09:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 2015-03807
Note

The thesis was first published 2021-01-15. Errata was published 2021-11-19. All files were hidden by decision of the Faculty of Science & Engineering 2022-01-21.

Available from: 2021-01-15 Created: 2021-01-15 Last updated: 2025-02-07Bibliographically approved
List of papers
1. MODifieR: an Ensemble R Package for Inference of Disease Modules from Transcriptomics Networks
Open this publication in new window or tab >>MODifieR: an Ensemble R Package for Inference of Disease Modules from Transcriptomics Networks
Show others...
2020 (English)In: Bioinformatics, ISSN 1367-4803, E-ISSN 1367-4811, Vol. 36, no 12, p. 3918-3919Article in journal (Refereed) Published
Abstract [en]

Motivation: Complex diseases are due to the dense interactions of many disease-associated factors that dysregulate genes that in turn form the so-called disease modules, which have shown to be a powerful concept for understanding pathological mechanisms. There exist many disease module inference methods that rely on somewhat different assumptions, but there is still no gold standard or best-performing method. Hence, there is a need for combining these methods to generate robust disease modules. Results: We developed MODule IdentiFIER (MODifieR), an ensemble R package of nine disease module inference methods from transcriptomics networks. MODifieR uses standardized input and output allowing the possibility to combine individual modules generated from these methods into more robust disease-specific modules, contributing to a better understanding of complex diseases.

Place, publisher, year, edition, pages
OXFORD UNIV PRESS, 2020
National Category
Bioinformatics and Computational Biology
Identifiers
urn:nbn:se:liu:diva-168277 (URN)10.1093/bioinformatics/btaa235 (DOI)000550127500051 ()32271876 (PubMedID)2-s2.0-85087321319 (Scopus ID)
Note

Funding Agencies|Knowledge Foundation; Swedish Research CouncilSwedish Research Council; Swedish foundation for strategic researchSwedish Foundation for Strategic Research

Available from: 2020-08-21 Created: 2020-08-21 Last updated: 2025-11-04Bibliographically approved
2. Whole-genome sequencing and gene network modules predict gemcitabine/carboplatin-induced myelosuppression in non-small cell lung cancer patients
Open this publication in new window or tab >>Whole-genome sequencing and gene network modules predict gemcitabine/carboplatin-induced myelosuppression in non-small cell lung cancer patients
Show others...
2020 (English)In: npj Systems Biology and Applications, E-ISSN 2056-7189, Vol. 6, no 1, article id 25Article in journal (Refereed) Published
Abstract [en]

Gemcitabine/carboplatin chemotherapy commonly induces myelosuppression, including neutropenia, leukopenia, and thrombocytopenia. Predicting patients at risk of these adverse drug reactions (ADRs) and adjusting treatments accordingly is a long-term goal of personalized medicine. This study used whole-genome sequencing (WGS) of blood samples from 96 gemcitabine/carboplatin-treated non-small cell lung cancer (NSCLC) patients and gene network modules for predicting myelosuppression. Association of genetic variants in PLINK found 4594, 5019, and 5066 autosomal SNVs/INDELs with p ≤ 1 × 10−3 for neutropenia, leukopenia, and thrombocytopenia, respectively. Based on the SNVs/INDELs we identified the toxicity module, consisting of 215 unique overlapping genes inferred from MCODE-generated gene network modules of 350, 345, and 313 genes, respectively. These module genes showed enrichment for differentially expressed genes in rat bone marrow, human bone marrow, and human cell lines exposed to carboplatin and gemcitabine (p < 0.05). Then using 80% of the patients as training data, random LASSO reduced the number of SNVs/INDELs in the toxicity module into a feasible prediction model consisting of 62 SNVs/INDELs that accurately predict both the training and the test (remaining 20%) data with high (CTCAE 3–4) and low (CTCAE 0–1) maximal myelosuppressive toxicity completely, with the receiver-operating characteristic (ROC) area under the curve (AUC) of 100%. The present study shows how WGS, gene network modules, and random LASSO can be used to develop a feasible and tested model for predicting myelosuppressive toxicity. Although the proposed model predicts myelosuppression in this study, further evaluation in other studies is required to determine its reproducibility, usability, and clinical effect.

Place, publisher, year, edition, pages
Nature Publishing Group, 2020
Keywords
Cancer, Genetic interaction, Systems analysis
National Category
Medical Genetics and Genomics Bioinformatics and Computational Biology Cancer and Oncology
Identifiers
urn:nbn:se:liu:diva-168465 (URN)10.1038/s41540-020-00146-6 (DOI)000568927100001 ()32839457 (PubMedID)2-s2.0-85089776223 (Scopus ID)
Note

Funding agencies: Swedish Cancer Society, the Swedish Research Council, Linköping University, ALF grants Region Östergötland, the Funds of Radiumhemmet, Marcus Borgströms stiftelse, Stiftelsen Assar Gabrielssons Fond

Available from: 2020-08-24 Created: 2020-08-24 Last updated: 2025-02-10Bibliographically approved
3. CD4(+) T-cell DNA methylation changes during pregnancy significantly correlate with disease-associated methylation changes in autoimmune diseases
Open this publication in new window or tab >>CD4(+) T-cell DNA methylation changes during pregnancy significantly correlate with disease-associated methylation changes in autoimmune diseases
Show others...
2022 (English)In: Epigenetics, ISSN 1559-2294, E-ISSN 1559-2308, Vol. 17, no 9, p. 1040-1055Article in journal (Refereed) Published
Abstract [en]

Epigenetics may play a central, yet unexplored, role in the profound changes that the maternal immune system undergoes during pregnancy and could be involved in the pregnancy-induced modulation of several autoimmune diseases. We investigated changes in the methylome in isolated circulating CD4(+) T-cells in non-pregnant and pregnant women, during the 1(st) and 2(nd) trimester, using the Illumina Infinium Human Methylation 450K array, and explored how these changes were related to autoimmune diseases that are known to be affected during pregnancy. Pregnancy was associated with several hundreds of methylation differences, particularly during the 2(nd) trimester. A network-based modular approach identified several genes, e.g., CD28, FYN, VAV1 and pathways related to T-cell signalling and activation, highlighting T-cell regulation as a central component of the observed methylation alterations. The identified pregnancy module was significantly enriched for disease-associated methylation changes related to multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus. A negative correlation between pregnancy-associated methylation changes and disease-associated changes was found for multiple sclerosis and rheumatoid arthritis, diseases that are known to improve during pregnancy whereas a positive correlation was found for systemic lupus erythematosus, a disease that instead worsens during pregnancy. Thus, the directionality of the observed changes is in line with the previously observed effect of pregnancy on disease activity. Our systems medicine approach supports the importance of the methylome in immune regulation of T-cells during pregnancy. Our findings highlight the relevance of using pregnancy as a model for understanding and identifying disease-related mechanisms involved in the modulation of autoimmune diseases.

Place, publisher, year, edition, pages
Taylor & Francis Inc, 2022
Keywords
Pregnancy; epigenetics; methylation; CD4(+) T cells; module; rheumatoid arthritis; multiple sclerosis; systemic lupus erythematosus
National Category
Cell and Molecular Biology
Identifiers
urn:nbn:se:liu:diva-180368 (URN)10.1080/15592294.2021.1982510 (DOI)000703400700001 ()34605719 (PubMedID)
Note

Funding Agencies|Swedish Foundation for Strategic ResearchSwedish Foundation for Strategic Research [SB16-0011]; Swedish Research CouncilSwedish Research CouncilEuropean Commission [K2013-61X-22310-01-4, 2015-030807, 2018-02776]; Lions research grant [Liu-2012-01948]

Available from: 2021-10-18 Created: 2021-10-18 Last updated: 2023-12-22
4. A validated generally applicable approach using the systematic assessment of disease modules by GWAS reveals a multi-omic module strongly associated with risk factors in multiple sclerosis
Open this publication in new window or tab >>A validated generally applicable approach using the systematic assessment of disease modules by GWAS reveals a multi-omic module strongly associated with risk factors in multiple sclerosis
Show others...
2021 (English)In: BMC Genomics, E-ISSN 1471-2164, Vol. 22, no 1, article id 631Article in journal (Refereed) Published
Abstract [en]

Background There exist few, if any, practical guidelines for predictive and falsifiable multi-omic data integration that systematically integrate existing knowledge. Disease modules are popular concepts for interpreting genome-wide studies in medicine but have so far not been systematically evaluated and may lead to corroborating multi-omic modules. Result We assessed eight module identification methods in 57 previously published expression and methylation studies of 19 diseases using GWAS enrichment analysis. Next, we applied the same strategy for multi-omic integration of 20 datasets of multiple sclerosis (MS), and further validated the resulting module using both GWAS and risk-factor-associated genes from several independent cohorts. Our benchmark of modules showed that in immune-associated diseases modules inferred from clique-based methods were the most enriched for GWAS genes. The multi-omic case study using MS data revealed the robust identification of a module of 220 genes. Strikingly, most genes of the module were differentially methylated upon the action of one or several environmental risk factors in MS (n = 217, P = 10(- 47)) and were also independently validated for association with five different risk factors of MS, which further stressed the high genetic and epigenetic relevance of the module for MS. Conclusions We believe our analysis provides a workflow for selecting modules and our benchmark study may help further improvement of disease module methods. Moreover, we also stress that our methodology is generally applicable for combining and assessing the performance of multi-omic approaches for complex diseases.

Place, publisher, year, edition, pages
BMC, 2021
Keywords
Benchmark; Multi-omics; Network modules; Multiple sclerosis; Risk factors; Disease modules; Network analysis; Protein network analysis; Transcriptomics; Methylomics; Data integration; Genome-wide association analysis
National Category
Bioinformatics and Computational Biology
Identifiers
urn:nbn:se:liu:diva-179166 (URN)10.1186/s12864-021-07935-1 (DOI)000692402600002 ()34461822 (PubMedID)
Note

Funding Agencies|Swedish Research CouncilSwedish Research CouncilEuropean Commission [201503807, 2018-02638]; Swedish foundation for strategic researchSwedish Foundation for Strategic Research [SB16-0095]; Center for Industrial IT (CENIIT); European Union Horizon 2020/European Research Council Consolidator grant (Epi4MS) [818170]; Knut and Alice Wallenberg FoundationKnut & Alice Wallenberg Foundation [2019.0089]; Knowledge Foundation [20170298]; Linkoping University

Available from: 2021-09-14 Created: 2021-09-14 Last updated: 2025-02-07

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Badam, Tejaswi Venkata Satya

Search in DiVA

By author/editor
Badam, Tejaswi Venkata Satya
By organisation
BioinformaticsFaculty of Science & Engineering
Bioinformatics and Computational Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 4035 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf