liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Combining Reciprocity and CSI Feedback in MIMO Systems
Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering. KTH Royal Institute of Technology, Kista, Sweden.ORCID iD: 0000-0002-5954-434X
Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-7599-4367
2022 (English)In: IEEE Transactions on Wireless Communications, ISSN 1536-1276, E-ISSN 1558-2248, Vol. 21, no 11, p. 10065-10080Article in journal (Refereed) Published
Abstract [en]

Reciprocity-based time-division duplex (TDD) Massive MIMO (multiple-input multiple-output) systems utilize channel estimates obtained in the uplink to perform precoding in the downlink. However, this method has been criticized of breaking down, in the sense that the channel estimates are not good enough to spatially separate multiple user terminals, at low uplink reference signal signal-to-noise ratios, due to insufficient channel estimation quality. Instead, codebook-based downlink precoding has been advocated for as an alternative solution in order to bypass this problem. We analyze this problem by considering a “grid-of-beams world” with a finite number of possible downlink channel realizations. Assuming that the terminal accurately can detect the downlink channel, we show that in the case where reciprocity holds, carefully designing a mapping between the downlink channel and the uplink reference signals will perform better than both the conventional TDD Massive MIMO and frequency-division duplex (FDD) Massive MIMO approach. We derive elegant metrics for designing this mapping, and further, we propose algorithms that find good sequence mappings.

Place, publisher, year, edition, pages
IEEE, 2022. Vol. 21, no 11, p. 10065-10080
Keywords [en]
Channel estimation, Downlink, Uplink, Base stations, Signal to noise ratio, Massive MIMO, Precoding
National Category
Telecommunications
Identifiers
URN: urn:nbn:se:liu:diva-188498DOI: 10.1109/TWC.2022.3182749ISI: 000882003900084OAI: oai:DiVA.org:liu-188498DiVA, id: diva2:1695470
Funder
Swedish Research Council, 2019-05068; D0760701Knut and Alice Wallenberg Foundation
Note

Additional funding agencies: Excellence Center at Linköping, Lund in Information Technology (ELLIIT)

Available from: 2022-09-14 Created: 2022-09-14 Last updated: 2022-11-30Bibliographically approved
In thesis
1. Signal Processing Aspects of Massive MIMO
Open this publication in new window or tab >>Signal Processing Aspects of Massive MIMO
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Massive MIMO (multiple-input-multiple-output) is a technology that uses an antenna array with a massive number of antennas at the wireless base station. It has shown widespread benefit and has become an inescapable solution for the future of wireless communication. The mainstream literature focuses on cases when high data rates for a handful of devices are of priority. In reality, due to the diversity of applications, no solution is one-size-fits-all. This thesis provides signal-processing solutions for three challenging situations.  

The first challenging situation deals with the acquisition of channel estimates when the signal-to-noise-ratio (SNR) is low. The benefits of massive MIMO are unlocked by having good channel estimates. By the virtue of reciprocity in time-division duplex, the estimates are obtained by transmitting pilots on the uplink. However, if the uplink SNR is low, the quality of the channel estimates will suffer and consequently the spectral efficiency will also suffer. This thesis studies two cases where the channel estimates can be improved: one where the device is stationary such that the channel is constant over many coherence blocks and one where the device has access to accurate channel estimates such that it can design its pilots based on the knowledge of the channel. The thesis provides algorithms and methods that exploit the aforementioned structures which improve the spectral efficiency.  

Next, the thesis considers massive machine-type communications, where a large number of simple devices, such as sensors, are communicating with the base station. This thesis provides a quantitative study on which type of benefits massive MIMO can provide for this communication scenario — many devices can be spatially multiplexed and their battery life can be increased. Further, activity detection is also studied and it is shown that the channel hardening and favorable propagation properties of massive MIMO can be exploited to design efficient detection algorithms.  

The third part of the thesis studies a more specific application of massive MIMO, namely federated learning. In federated learning, the goal is for the devices to collectively train a machine learning model based on their local data by only transmitting model updates to the base station. Sum channel estimation has been advocated for blind over-the-air federated learning since fewer communication resources are required to obtain such estimates. On the contrary, this thesis shows that individually estimating each device's channel can save a huge number of resources owing to the fact that it allows for individual processing such as gradient sparsification which in turn saves a huge number of resources that compensates for the channel estimation overhead. 

Abstract [sv]

Massiv MIMO (eng: multiple-input-multiple-output) är en teknik för trådlös kommunikation som använder ett stort antal antenner vid basstationen. Tekniken har påvisat omfattande fördelar och har blivit en oundviklig lösning för framtidens trådlösa kommunikation. Fokuset för befintlig forskning inom fältet har varit för situationer där höga datatakter till en handfull enheter har prioriterats. På grund av mångfalden av tillämpningar kommer det i verkligheten inte kunna finnas en lösning som passar allt. Denna avhandling presenterar signalbehandlingslösningar för tre olika utmanande situationer.

Den första utmanande situationen handlar om anskaffandet av kanalskattningar. Kanalen beskriver hur signaler påverkas när de skickas från sändaren till mottagaren. Den huvudsakliga nyttan av massiv MIMO möjliggörs genom att ha noggranna kanalskattningar. Med bra kanalskattningar kan signalen skickas på ett sätt så att fördelarna av det massiva antalet antenner vid basstationen utnyttjas på bästa sätt. Dålig kvalitet på kanalskattningen leder till lägre datatakter. I denna avhandling studeras två fall där vissa specifika strukturer i systemmodellen kan utnyttjas för att förbättra kanalskattningarna.

Nästa situation handlar om massiv maskintypskommunikation, där ett stort antal enkla enheter, till exempel sensorer, kommunicerar med basstationen. I avhandlingen presenteras en kvantitativ fallstudie som studerar vilka typer av vinster massiv MIMO kan erbjuda för detta scenario. Resultaten visar att många enheter kan betjänas samtidigt och att deras batteritid kan förbättras. Vidare visas att egenskaperna från massiv MIMO kan utnyttjas för att utforma effektiva algoritmer som kan detektera när olika sensorer är aktiva och vill kommunicera med basstationen.

Det tredje fallet handlar om en specifik tillämpning av massiv MIMO, närmare bestämt federerad maskininlärning. Federerad maskininlärning är en typ av distribuerad maskininlärning där många klienter samarbetar för att tillsammans lösa ett maskininlärningsproblem. Det unika i federerad maskininlärning är att enheterna inte delar sitt data med någon. På så sätt kan klienterna behålla sin integritet. I avhandlingen presenteras hur dessa klienter ska kommunicera med den centrala servern på ett sätt som möjliggör att individuell signalbehandling, som till exempel utglesning, kan användas. Denna signalbehandling sparar ett stort antal kommunikationsresurser.  

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2022. p. 56
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2251
National Category
Telecommunications
Identifiers
urn:nbn:se:liu:diva-188500 (URN)10.3384/9789179294540 (DOI)9789179294533 (ISBN)9789179294540 (ISBN)
Public defence
2022-10-14, Ada Lovlace, B-building, Campus Valla, Linköping, 09:00 (English)
Opponent
Supervisors
Available from: 2022-09-14 Created: 2022-09-14 Last updated: 2022-09-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Becirovic, EmaBjörnson, EmilLarsson, Erik G.

Search in DiVA

By author/editor
Becirovic, EmaBjörnson, EmilLarsson, Erik G.
By organisation
Communication SystemsFaculty of Science & Engineering
In the same journal
IEEE Transactions on Wireless Communications
Telecommunications

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 250 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf