liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Martini 3 model of surface modified cellulose nanocrystals: investigation of aqueous colloidal stability
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. (Wallenberg Wood Science Center)
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. (Wallenberg Wood Science Center)ORCID iD: 0000-0001-5671-4545
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. (Wallenberg Wood Science Center)ORCID iD: 0000-0002-6078-3006
2022 (English)In: Cellulose, ISSN 0969-0239, E-ISSN 1572-882X, Vol. 29, p. 9493-9509Article in journal (Refereed) Published
Abstract [en]

The Martini coarse-grained force field is one of the most popular coarse-grained models for molecular dynamics (MD) modelling in biology, chemistry, and material science. Recently, a new force field version, Martini 3, had been reported with improved interaction balance and many new bead types. Here, we present a new cellulose nanocrystal (CNC) model based on Martini 3. The calculated CNC structures, lattice parameters, and mechanical properties reproduce experimental measurements well and provide an improvement over previous CNC models. Then, surface modifications with COO- groups and interactions with Na+ ions were fitted based on the atomistic MD results to reproduce the interactions between surface-modified CNCs. Finally, the colloidal stability and dispersion properties were studied with varied NaCl concentrations and a good agreement with experimental results was found. Our work brings new progress toward CNC modelling to describe different surface modifications and colloidal solutions that were not available in previous coarse-grained models. [GRAPHICS] .

Place, publisher, year, edition, pages
Springer , 2022. Vol. 29, p. 9493-9509
Keywords [en]
Martini 3; Coarse-grained molecular dynamics simulations; Cellulose nanocrystal (CNC); TEMPO surface modification; Colloidal stability
National Category
Other Chemistry Topics
Identifiers
URN: urn:nbn:se:liu:diva-189314DOI: 10.1007/s10570-022-04863-5ISI: 000865202700001OAI: oai:DiVA.org:liu-189314DiVA, id: diva2:1704680
Note

Funding Agencies|Linkoping University; Knut and Alice Wallenberg foundation through the Wallenberg Wood Science Center at Linkoping University

Available from: 2022-10-19 Created: 2022-10-19 Last updated: 2023-08-25Bibliographically approved
In thesis
1. Computational Studies of Cellulose-based Materials
Open this publication in new window or tab >>Computational Studies of Cellulose-based Materials
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Cellulose is a remarkable organic biopolymer and sustainable raw material existing in nature. Over the past several decades, the study of cellulose materials has attracted significant attention in chemistry, physics, biomedicine, and engineering fields. The unique properties of cellulose such as high tensile strength, biocompatibility, and renewability, enabled its applications in numerous industries, including textiles, construction, biomedicine, pulp production, energy, and even electronics. However, in-depth research on the performance of cellulose-based materials and devices is still in high demand due to the complexity of cellulose and its derivatives.  

This thesis uses a theoretical modelling method to explore the cellulose-based materials structure, morphology and properties, and predict cellulose-based devices performance. The method is efficacious in understanding natural phenomena and solving practical problems through mathematical modelling, computer engineering, and data analysis.  

This thesis focuses on three computational studies: (I) cellulose nanomaterials, (II) cellulose composites, and (III) cellulose-based ion exchange membranes in aqueous organic redox flow batteries (AORFBs). The first part presents theoretical insights into cellulose nanocrystal (CNC), surface modifications, and regenerated cellulose. The second part includes numerical models of light propagation in cellulose composites such as transparent wood, and the third part involves modelling and simulation of AORFBs.  

In part (I), we constructed Martini 3 coarse-grained (CG) molecular dynamics (MD) models describing different crystalline structure of CNCs (including Iβ/II/IIII). Subsequently, we investigated the dispersion and aggregation properties of COO modified CNC Iβ in NaCl aqueous solutions and found that the results are consistent with experimental observations. Also, based on topologies developed for cellulose Iβ/II, we studied the regeneration process of cellulose crystallites. The X-ray diffraction (XRD) was used to monitor structural changes and microcrystal formation during regeneration. The XRD results indicate that the regenerated cellulose crystallites are cellulose II, which are in line with the experimental measurements. In part (II), we explored light propagation in transparent wood (TW), i.e., cellulose/PMMA composite materials, using TW models developed by us. The models were built by identifying cellulose fiber structures in SEM images. We employed ray tracing, a relatively simple but proven accurate and efficient technique, and rigorous electromagnetic methods to analyze the light propagation in TW and extract the refractive index of the TW. In part (III), we constructed a model of an AORFB based on the Tertiary-Current-Distribution/Nernst-Planck equations implemented in COMSOL. Then we simulated the charge-discharge and capacity loss curves of the AORFBs. The simulation results are consistent with the experimental measurements.  

We believe that the results reported in the thesis provide better understanding of cellulose-based materials and devices, advance the computational methods for modelling and simulations of cellulose, and promote the sustainable development of technology and industry. 

Abstract [sv]

Cellulosa är ett av de mest förekommande materialen på jorden och finns främst i trä, halm, bomull, lin med mera. Cellulosaprodukter som textilier och papper har använts i tusentals år. På senare år, med framstegen inom materialvetenskap och teknik, kan hållbara cellulosamaterial, inklusive naturlig cellulosa och regenererad cellulosa, användas inom förnybar energi, miljöskydd, biomedicin och många andra områden. Fortsatt fördjupad förståelse och forskning om cellulosa och dess kompositmaterial är dock fortfarande nödvändig.  

Denna avhandling använder teoretisk modellering för att undersöka struktur, morfologi och egenskaper hos cellulosa-baserade material samt för att förutsäga prestanda för cellulosa-baserade komponenter. Metoden är effektiv för att förstå naturliga fenomen och lösa praktiska problem genom datormodellering, simulering och dataanalys.  

Avhandlingen består av tre delar: (I) cellulosa-nanomaterial, (II) cellulosa-kompositmaterial och (III) cellulosa jonbytesmembran i vattenhaltiga organiska redox flödesbatterier (AORFB). Den första delen behandlar teoretiska insikter i cellulosa-nanokristaller (CNC), ytmodifieringar och regenererad cellulosa. Den andra delen inkluderar numeriska modeller för ljusutbredning i cellulosa-kompositer, och den tredje delen presenterar modellering och simulering av AORFB.  

I den första delen konstruerade vi modeller av CNC för att analysera deras struktur, morfologi och egenskaper. Vi undersökte dispersionen och aggregeringen av COO− modifierade CNC i vattenlösningar av NaCl och fann att resultaten överensstämmer med experimentella observationer. Därefter undersökte vi cellulosa-regenerering och använde röntgendiffraktion (XRD) för att övervaka mikrostrukturella förändringar under denna process. XRD-resultaten visar att de regenererade cellulosakristalliterna har cellulosa II-struktur, vilket överensstämmer med experimentella mätningar. I den andra delen studerade vi ljusutbredning i genomskinligt trä (TW). TW framställdes genom att ersätta lignin i trä med ett kemiskt material vars brytningsindex är nära cellulosans. Vi undersökte förhållandet mellan ljusspridning i TW och brytningsindexet för kemiska material med hjälp av spårning av ljusstrålar och rigorösa elektromagnetiska metoder. I den tredje delen konstruerade vi en modell för AORFB baserat på elektrokemiska ekvationer. Vi studerade laddnings- och urladdningskurvor samt kapacitetsförlusten för AORFB. Simuleringsresultaten överensstämmer med experimentella mätningar.  

Denna avhandling främjar förståelsen för cellulosa-baserade material och komponenter och främjar hållbar utveckling av teknik och industri.   

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2023. p. 62
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2332
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:liu:diva-197195 (URN)10.3384/9789180752787 (DOI)9789180752770 (ISBN)9789180752787 (ISBN)
Public defence
2023-09-22, K3, Kåkenhus, Campus Norrköping, Norrköping, 10:15 (English)
Opponent
Supervisors
Available from: 2023-08-25 Created: 2023-08-25 Last updated: 2023-08-25Bibliographically approved

Open Access in DiVA

fulltext(3528 kB)217 downloads
File information
File name FULLTEXT01.pdfFile size 3528 kBChecksum SHA-512
32efec21f8208617c3d1fbb50826c538c6249ee80540d1686a0da226a57325bbde967c4b7f5f96f54c599ac0c3d9217a89f95a3d9b5ebb6b710f3101baf2f653
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Mehandzhiyski, AlexandarZozoulenko, Igor

Search in DiVA

By author/editor
Pang, JiuMehandzhiyski, AlexandarZozoulenko, Igor
By organisation
Laboratory of Organic ElectronicsFaculty of Science & Engineering
In the same journal
Cellulose
Other Chemistry Topics

Search outside of DiVA

GoogleGoogle Scholar
Total: 221 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 322 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf