liu.seSearch for publications in DiVA
Change search
Refine search result
1234567 1 - 50 of 452
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abelius, Martina S
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Janefjord, Camilla
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Ernerudh, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Immunology and Transfusion Medicine.
    Berg, Göran
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center of Paediatrics and Gynaecology and Obstetrics, Department of Gynaecology and Obstetrics in Linköping.
    Matthiesen, Leif
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center of Paediatrics and Gynaecology and Obstetrics, Department of Gynaecology and Obstetrics in Linköping. Helsingborg Hospital, Helsingborg.
    Duchén, Karel
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center of Paediatrics and Gynaecology and Obstetrics, Department of Paediatrics in Linköping.
    Nilsson, Lennart J
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Allergy Center.
    Jenmalm, Maria
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    The Placental Immune Milieu is Characterized by a Th2- and Anti-Inflammatory Transcription Profile, Regardless of Maternal Allergy, and Associates with Neonatal Immunity2015In: American Journal of Reproductive Immunology, ISSN 1046-7408, E-ISSN 1600-0897, Vol. 73, no 5, p. 445-459Article in journal (Refereed)
    Abstract [en]

    PROBLEM: How maternal allergy affects the systemic and local immunological environment during pregnancy and the immune development of the offspring is unclear.

    METHOD OF STUDY: Expression of 40 genes was quantified by PCR arrays in placenta, peripheral blood mononuclear cells (PBMC), and cord blood mononuclear cells (CBMC) from 7 allergic and 12 non-allergic women and their offspring.

    RESULTS: Placental gene expression was dominated by a Th2-/anti-inflammatory profile, irrespectively of maternal allergy, as compared to gene expression in PBMC. p35 expression in placenta correlated with fetal Tbx21 (ρ = -0.88, P < 0.001) and IL-5 expression in PBMC with fetal galectin1 (ρ = 0.91, P < 0.001). Increased expression of Th2-associated CCL22 in CBMC preceded allergy development.

    CONCLUSIONS: Gene expression locally and systemically during pregnancy was partly associated with the offspring's gene expression, possibly indicating that the immunological milieu is important for fetal immune development. Maternal allergy was not associated with an enhanced Th2 immunity in placenta or PBMC, while a marked prenatal Th2 skewing, shown as increased CCL22 mRNA expression, might contribute to postnatal allergy development.

    Download full text (pdf)
    fulltext
  • 2.
    Abrahamsson, Thomas
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center of Paediatrics and Gynaecology and Obstetrics, Department of Paediatrics in Linköping.
    Jakobsson, H.E.
    Karolinska Institute, Stockholm, Sweden.
    Andersson, A.F.
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Björksten, B.
    Karolinska Institute, Stockholm, Sweden; Örebro University, Sweden .
    Engstrand, L.
    Karolinska Institute, Stockholm, Sweden; KTH Royal Institute of Technology, Stockholm, Sweden.
    Jenmalm, Maria
    Linköping University, Department of Clinical and Experimental Medicine, Division of Inflammation Medicine. Linköping University, Faculty of Health Sciences.
    Low gut microbiota diversity in early infancy precedes asthma at school age2014In: Clinical and Experimental Allergy, ISSN 0954-7894, E-ISSN 1365-2222, Vol. 44, no 6, p. 842-850Article in journal (Refereed)
    Abstract [en]

    BACKGROUND:

    Low total diversity of the gut microbiota during the first year of life is associated with allergic diseases in infancy, but little is known how early microbial diversity is related to allergic disease later in school age.

    OBJECTIVE:

    To assess microbial diversity and characterize the dominant bacteria in stool during the first year of life in relation to the prevalence of different allergic diseases in school age, such as asthma, allergic rhinoconjunctivitis (ARC) and eczema.

    METHODS:

    The microbial diversity and composition was analysed with barcoded 16S rDNA 454 pyrosequencing in stool samples at 1 week, 1 month and 12 months of age in 47 infants which were subsequently assessed for allergic disease and skin prick test reactivity at 7 years of age (ClinicalTrials.gov ID NCT01285830).

    RESULTS:

    Children developing asthma (n = 8) had a lower diversity of the total microbiota than non-asthmatic children at 1 week (P = 0.04) and 1 month (P = 0.003) of age, whereas allergic rhinoconjunctivitis (n = 13), eczema (n = 12) and positive skin prick reactivity (n = 14) at 7 years of age did not associate with the gut microbiota diversity. Neither was asthma associated with the microbiota composition later in infancy (at 12 months). Children having IgE-associated eczema in infancy and subsequently developing asthma had lower microbial diversity than those that did not. There were no significant differences, however, in relative abundance of bacterial phyla and genera between children with or without allergic disease.

    CONCLUSION AND CLINICAL RELEVANCE:

    Low total diversity of the gut microbiota during the first month of life was associated with asthma but not ARC in children at 7 years of age. Measures affecting microbial colonization of the infant during the first month of life may impact asthma development in childhood.

    Download full text (pdf)
    fulltext
  • 3.
    Adolfsson, Per I
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences.
    Bloth, Björn
    Department of Clinical Neuroscience, Laboratory of Translational Neuropharmacology, Center of Molecular Medicine, Karolinska Institute, Stockholm, Sweden.
    Hägg, Staffan
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Region Östergötland, Center for Diagnostics, Department of Clinical Pharmacology. Linköping University, Faculty of Health Sciences. Futurum Academy for Health and Care, Jönköping County Council, Sweden.
    Svensson, Samuel P S
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences.
    Zinc Induces a Bell-shaped Proliferative Dose-response Effect in Cultured Smooth Muscle Cells From Benign Prostatic Hyperplasia.2015In: Urology, ISSN 0090-4295, E-ISSN 1527-9995, Vol. 85, no 3, p. 704.e15-704.e19Article in journal (Refereed)
    Abstract [en]

    OBJECTIVE: To investigate the effects of zinc (Zn(2+)) concentrations on cultured benign prostatic hyperplasia (BPH) smooth muscle cell (SMC) proliferation.

    METHODS: The effects of Zn(2+) were studied in primary cultures of human BPH SMC, stimulated with either 10-μM lysophosphatidic acid (LPA) or LPA in combination with 100-nM testosterone. Deoxyribonucleic acid replication and protein synthesis using [(3)H]-thymidine and [(35)S]-methionine incorporation were measured. Furthermore, studies were performed to evaluate if Zn(2+) could potentiate the inhibitory effect of phosphodiesterase-5 blockers, on BPH SMC proliferation.

    RESULTS: Zn(2+) generated a bell-shaped concentration response, both regarding deoxyribonucleic acid replication and protein synthesis in cultured BPH SMC. Below a threshold value (approximately 200 μM), a significant mitogenic effect was seen, whereas higher concentrations inhibited SMC proliferation after stimulation with LPA. This effect was even more pronounced after stimulation of LPA in combination with testosterone. Moreover, phosphodiesterase-5 inhibitors, that is, sildenafil blocked LPA-stimulated BPH SMC proliferation. This antiproliferative effect, was significantly potentiated by coincubation with Zn(2+) in an additative manner.

    CONCLUSION: The bell-shaped concentration response of Zn(2+) on cultured BPH SMC proliferation suggests that changes in prostate Zn(2+) concentrations, during aging, diet, or inflammatory conditions, may be of importance in the pathogenesis of BPH.

  • 4.
    Adori, Csaba
    et al.
    Karolinska Inst, Sweden.
    Daraio, Teresa
    Karolinska Inst, Sweden.
    Kuiper, Raoul
    Karolinska Inst, Sweden.
    Barde, Swapnali
    Karolinska Inst, Sweden.
    Horvathova, Lubica
    Slovak Acad Sci, Slovakia.
    Yoshitake, Takashi
    Karolinska Inst, Sweden.
    Ihnatko, Robert
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Clinical Chemistry. Linköping University, Faculty of Medicine and Health Sciences. Georg August Univ Gottingen, Germany.
    Valladolid-Acebes, Ismael
    Karolinska Inst, Sweden.
    Vercruysse, Pauline
    Karolinska Inst, Sweden.
    Wellendorf, Ashley M.
    Cincinnati Childrens Hosp Med Ctr, OH 45229 USA.
    Gramignoli, Roberto
    Karolinska Inst, Sweden.
    Bozoky, Bela
    Karolinska Univ Hosp, Sweden.
    Kehr, Jan
    Karolinska Inst, Sweden.
    Theodorsson, Elvar
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Clinical Chemistry and Pharmacology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Chemistry.
    Cancelas, Jose A.
    Cincinnati Childrens Hosp Med Ctr, OH 45229 USA; Univ Cincinnati, OH 45267 USA.
    Mravec, Boris
    Slovak Acad Sci, Slovakia; Comenius Univ, Slovakia.
    Jorns, Carl
    Karolinska Univ Hosp Huddinge, Sweden.
    Ellis, Ewa
    Karolinska Inst, Sweden; Karolinska Inst, Sweden.
    Mulder, Jan
    Karolinska Inst, Sweden.
    Uhlen, Mathias
    Karolinska Inst, Sweden; Royal Inst Technol, Sweden.
    Bark, Christina
    Karolinska Inst, Sweden.
    Hökfelt, Tomas
    Karolinska Inst, Sweden.
    Disorganization and degeneration of liver sympathetic innervations in nonalcoholic fatty liver disease revealed by 3D imaging2021In: Science Advances, E-ISSN 2375-2548, Vol. 7, no 30, article id eabg5733Article in journal (Refereed)
    Abstract [en]

    Hepatic nerves have a complex role in synchronizing liver metabolism. Here, we used three-dimensional (3D) immunoimaging to explore the integrity of the hepatic nervous system in experimental and human nonalcoholic fatty liver disease (NAFLD). We demonstrate parallel signs of mild degeneration and axonal sprouting of sympathetic innervations in early stages of experimental NAFLD and a collapse of sympathetic arborization in steatohepatitis. Human fatty livers display a similar pattern of sympathetic nerve degeneration, correlating with the severity of NAFLD pathology. We show that chronic sympathetic hyperexcitation is a key factor in the axonal degeneration, here genetically phenocopied in mice deficient of the Rac-1 activator Vav3. In experimental steatohepatitis, 3D imaging reveals a severe portal vein contraction, spatially correlated with the extension of the remaining nerves around the portal vein, enlightening a potential intrahepatic neuronal mechanism of portal hypertension. These fundamental alterations in liver innervation and vasculature uncover previously unidentified neuronal components in NAFLD pathomechanisms.

    Download full text (pdf)
    fulltext
  • 5.
    Agholme, Lotta
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Inflammation Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Getting rid of intracellular Aβ- loss of cellular degradation leads to transfer between connected neurons2014In: Current pharmaceutical design, ISSN 1381-6128, E-ISSN 1873-4286, Vol. 20, no 15, p. 2458-2468Article in journal (Refereed)
    Abstract [en]

    The sporadic, late onset form of Alzheimers disease (AD) shares pathological hallmarks with the familial form; however, no clear reason for increased beta-amyloid (A beta) generation has been found in the former. It has long been speculated that the late onset form of AD is caused by reduced degradation and/or clearance of A beta. Indeed, both intracellular degradation systems, the proteasomal and lysosomal systems, have been shown to be defective in AD. Reduced proteasome activity increases levels of intracellular and secreted A beta. Furthermore, accumulation of improperly degraded A beta in the lysosomes causes lysosomal disruption and cell death. We recently showed that oligomeric A beta can be transmitted from one neuron to another, which causes neurotoxicity. In both the donating and receiving cells, A beta accumulates in the endo-lysosomal compartment. It is possible that ineffective degradation of A beta causes its transfer to neighboring neurons, thereby spreading AD pathology. This review summarizes the data underlying the idea of reduced A beta clearance and subsequent A beta spread in AD, and also suggests new therapeutic methods, which are aimed at targeting the degradation systems and synaptic transfer. By enhancing degradation of intracellular accumulated A beta, it can be possible to remove it and avoid A beta-induced neurodegeneration without disturbing the endogenously important pool of secreted A beta. Additionally, drugs targeted to inhibit the spread of intracellular toxic A beta aggregates may also be useful in stopping the progression of pathology, without affecting the level of A beta that normally occurs in the brain.

  • 6.
    Ahlner, Alexandra
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Biotechnology. Linköping University, The Institute of Technology.
    Carlsson, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Biotechnology. Linköping University, The Institute of Technology.
    Jonsson, Bengt-Harald
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Biotechnology. Linköping University, The Institute of Technology.
    Lundström, Patrik
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Biotechnology. Linköping University, The Institute of Technology.
    PINT: a software for integration of peak volumes and extraction of relaxation rates2013In: Journal of Biomolecular NMR, ISSN 0925-2738, E-ISSN 1573-5001, Vol. 56, no 3, p. 191-202Article in journal (Refereed)
    Abstract [en]

    We present the software Peak INTegration (PINT), designed to perform integration of peaks in NMR spectra. The program is very simple to run, yet powerful enough to handle complicated spectra. Peaks are integrated by fitting predefined line shapes to experimental data and the fitting can be customized to deal with, for instance, heavily overlapped peaks. The results can be inspected visually, which facilitates systematic optimization of the line shape fitting. Finally, integrated peak volumes can be used to extract parameters such as relaxation rates and information about low populated states. The utility of PINT is demonstrated by applications to the 59 residue SH3 domain of the yeast protein Abp1p and the 289 residue kinase domain of murine EphB2.

    Download full text (pdf)
    fulltext
  • 7.
    Alfredsson, Joakim
    et al.
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Region Östergötland, Heart Center, Department of Cardiology in Linköping. Linköping University, Faculty of Medicine and Health Sciences.
    Omar, Kime
    Vastmanland Cty Hosp, Sweden.
    Csog, Jozsef
    Region Östergötland, Local Health Care Services in East Östergötland, Department of Internal Medicine in Norrköping.
    Venetsanos, Dimitrios
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Cardiology in Linköping.
    Janzon, Magnus
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Society and Health. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart Center, Department of Cardiology in Linköping.
    Ekstedt, Mattias
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Mag- tarmmedicinska kliniken.
    Bleeding complications with clopidogrel or ticagrelor in ST-elevation myocardial infarction patients: A real life cohort study of two treatment strategies2020In: IJC Heart & Vasculature, E-ISSN 2352-9067, Vol. 27, article id 100495Article in journal (Refereed)
    Abstract [en]

    Introduction

    Dual antiplatelet therapy (DAPT), including potent P2Y12 inhibition after ST-elevation myocardial infarction (STEMI) is recommended in clinical guidelines. However, bleeding complications are common, and associated with worse outcomes. The aim of this study was to assess incidence of bleeding events with a clopidogrel-based compared to a ticagrelor-based DAPT strategy, in a real world population. Secondary aims were to assess ischemic complications and mortality.

    Methods and Results

    We identified 330 consecutive STEMI patients with a clopidogrel-based and 330 with a ticagrelor-based DAPT strategy. Patientś medical records were searched for bleeding and ischemic complications, over 6 months follow-up.

    The two groups were well balanced in baseline characteristics, age (69 years inboth groups), sex (31% vs 32% females), history of diabetes (19% vs 21%), hypertension (43% in both) and MI (17% vs 15%). There was no difference in CRUSADE bleeding score (28 vs 29). After discharge, there were more than twice as many bleeding events with a ticagrelor-based compared with a clopidogrel-based strategy (13.3% vs. 6.5%, p = 0.005). Bleeding events included significantly more severe bleeding complications (TIMI major/minor [5.8 vs 1.0, p = 0.001]) during the ticagrelor-based period. There was no significant difference in the composite of death, MI or stroke (7.8% vs 7.1%, p = 0.76).

    Conclusions

    In this observational study, a ticagrelor-based DAPT strategy was associated with significantly more bleeding complications, without any significant change in death, MI or stroke. Larger studies are needed to determine whether bleeding complications off-sets benefits with a more potent DAPT strategy in older and more comorbid real-life patients.

    Download full text (pdf)
    fulltext
  • 8.
    Alghazali, Raghad
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Nugud, Ahmed
    Univ Edinburgh, Scotland; Sheikh Khalifa Med City, U Arab Emirates.
    Elserafy, Ahmed
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Glycan Modifications as Regulators of Stem Cell Fate2024In: Biology, E-ISSN 2079-7737, Vol. 13, no 2, article id 76Article, review/survey (Refereed)
    Abstract [en]

    Simple Summary Stem cells represent hope for millions of patients seeking prompt recovery. Unfortunately, the process of converting stem cells into the target cells that will replace the failed or lost organ is still incompletely efficient. One of the underestimated factors that can affect this process is the complex sugar content on the cell surface or in the surrounding environment. In this article, we briefly reviewed the main types of sugars added to the surface of cell proteins, followed by a reflection on their role in stem cells at their original state and during their transformation to a specialized cell type, such as the cells of bones, heart, brain, etc. By the end, we explained different strategies that can be used to increase the efficiency of this process by adding certain types of sugars to the environment around the cells or a three-dimensional composite. Understanding the role of added sugars in the process of stem cell differentiation can provide another clue, ultimately advancing the field of regenerative medicine.Abstract Glycosylation is a process where proteins or lipids are modified with glycans. The presence of glycans determines the structure, stability, and localization of glycoproteins, thereby impacting various biological processes, including embryogenesis, intercellular communication, and disease progression. Glycans can influence stem cell behavior by modulating signaling molecules that govern the critical aspects of self-renewal and differentiation. Furthermore, being located at the cell surface, glycans are utilized as markers for stem cell pluripotency and differentiation state determination. This review aims to provide a comprehensive overview of the current literature, focusing on the effect of glycans on stem cells with a reflection on the application of synthetic glycans in directing stem cell differentiation. Additionally, this review will serve as a primer for researchers seeking a deeper understanding of how synthetic glycans can be used to control stem cell differentiation, which may help establish new approaches to guide stem cell differentiation into specific lineages. Ultimately, this knowledge can facilitate the identification of efficient strategies for advancing stem cell-based therapeutic interventions.

  • 9.
    Alghfeli, Latifa
    et al.
    Univ Sharjah, U Arab Emirates.
    Parambath, Divyasree
    Univ Sharjah, U Arab Emirates.
    Eldeen, Loaa A. Tag
    Suez Canal Univ, Egypt.
    El-Serafi, Ibrahim
    Ajman Univ, U Arab Emirates; Port Said Univ, Egypt.
    El-Serafi, Ahmed Taher
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Univ Sharjah, U Arab Emirates; Suez Canal Univ, Egypt.
    Non-additive effect of the DNA methylation inhibitor, 5-Aza-dC, and glass as a culture surface on osteogenic differentiation2022In: Heliyon, E-ISSN 2405-8440, Vol. 8, no 12, article id e12433Article in journal (Refereed)
    Abstract [en]

    The clinical need for bone regenerative solutions is expanding with increasing life expectancy and escalating incidence of accidents. Several strategies are being investigated to enhance the osteogenic differentiation of stem cells. We previously reported two different approaches for this purpose, in monolayer and three-dimensional cell culture. The first approach was based on pretreating cells with 5-Aza-dC, a DNA methylation inhibitor, before the applying the differentiation media. The second approach was based on culturing cells on a glass surface during differentiation. In this study, we investigated the potential effect of combining both methods. Our results sug-gested that both approaches were associated with decreasing global DNA methylation levels. Cells cultured as a monolayer on glass surface showed enhancement in alkaline phosphatase activity at day 10, while 5-Aza-dC pretreatment enhanced the activity at day 5, irrespective of the culture surface. In three-dimensional pellet cul-ture, 5-Aza-dC pretreatment enhanced osteogenesis through Runx-2 and TGF-beta 1 upregulation while the glass surface induced Osterix.Furthermore, pellets cultured on glass showed upregulation of a group of miRNAs, including pro-osteogenesis miR-20a and miR-148b and anti-osteogenesis miR-125b, miR-31, miR-138, and miR-133a. Interestingly, 5-Aza-dC was not associated with a change of miRNAs in cells cultured on tissue culture plastic but reverted the upregulated miRNAs on the glass to the basal level. This study confirms the two approaches for enhancing osteogenic differentiation and contradicts their combination.

    Download full text (pdf)
    fulltext
  • 10.
    Alghfeli, Latifa
    et al.
    Univ Sharjah, U Arab Emirates.
    Parambath, Divyasree
    Univ Sharjah, U Arab Emirates.
    Manzoor, Shaista
    Univ Sharjah, U Arab Emirates.
    Roach, Helmtrud I
    Univ Southampton, England.
    Oreffo, Richard O. C.
    Univ Southampton, England.
    El-Serafi, Ahmed Taher
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Univ Sharjah, U Arab Emirates; Suez Canal Univ, Egypt.
    Synthesis of scaffold-free, three dimensional, osteogenic constructs following culture of skeletal osteoprogenitor cells on glass surfaces2021In: Bone Reports, ISSN 2352-1872, Vol. 15, article id 101143Article in journal (Refereed)
    Abstract [en]

    Background: Efficient differentiation of stem cells into three-dimensional (3D) osteogenic construct is still an unmet challenge. These constructs can be crucial for patients with bone defects due to congenital or traumatic reasons. The modulation of cell fate and function as a consequence of interaction with the physical and chemical properties of materials is well known. Methods: The current study has examined the osteogenic differentiation potential of human skeletal populations following culture on glass surfaces, as a monolayer, or in glass tubes as a pellet culture. The 3D prosperities were assessed morphometrically and the differentiation was evaluated through molecular characterization as well as matrix formation. Results: Early temporal expression of alkaline phosphatase expression of skeletal populations was observed following culture on glass surfaces. Skeletal populations seeded on glass tubes, adhered as a monolayer to the tube base and subsequently formed 3D pellets at the air-media interface. The pellets cultured on glass displayed 4.9 +/- 1.3 times the weight and 2.9 +/- 0.1 the diameter of their counterpart cultured in plastic tubes and displayed enhanced production of osteogenic matrix proteins, such a collagen I and osteonectin. The size and weight of the pellets correlated with surface area in contrast to cell numbers seeded. Global DNA methylation level was decreased in pellets cultured on glass. In contrast, gene expression analysis confirmed upregulation extracellular matrix proteins and osteogenesis-related growth factors. Conclusion: This simple approach to the culture of skeletal cells on glass tubes provides a scaffold-free, 3D construct platform for generating pellets enabling analysis and evaluation of tissue development and integration of multiple constructs with implications for tissue repair and regenerative application on scale-up.

  • 11.
    Ali, Zaheer
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Cui, Dongmei
    Sun Yat Sen Univ, Peoples R China.
    Yang, Yunlong
    Fudan Univ, Peoples R China.
    Tracey-White, Dhani
    UCL Inst Ophthalmol, England.
    Vazquez Rodriguez, Gabriela
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Moosajee, Mariya
    UCL Inst Ophthalmol, England.
    Ju, Rong
    Sun Yat Sen Univ, Peoples R China.
    Li, Xuri
    Sun Yat Sen Univ, Peoples R China.
    Cao, Yihai
    Karolinska Inst, Sweden.
    Jensen, Lasse
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pharmacology.
    Synchronized tissue-scale vasculogenesis and ubiquitous lateral sprouting underlie the unique architecture of the choriocapillaris2020In: Developmental Biology, ISSN 0012-1606, E-ISSN 1095-564X, Vol. 457, no 2, p. 206-214Article in journal (Refereed)
    Abstract [en]

    The choriocapillaris is an exceptionally high density, two-dimensional, sheet-like capillary network, characterized by the highest exchange rate of nutrients for waste products per area in the organism. These unique morphological and physiological features are critical for supporting the extreme metabolic requirements of the outer retina needed for vision. The developmental mechanisms and processes responsible for generating this unique vascular network remain, however, poorly understood. Here we take advantage of the zebrafish as a model organism for gaining novel insights into the cellular dynamics and molecular signaling mechanisms involved in the development of the choriocapillaris. We show for the first time that zebrafish have a choriocapillaris highly similar to that in mammals, and that it is initially formed by a novel process of synchronized vasculogenesis occurring simultaneously across the entire outer retina. This initial vascular network expands by un-inhibited sprouting angiogenesis whereby all endothelial cells adopt tip-cell characteristics, a process which is sustained throughout embryonic and early post-natal development, even after the choriocapillaris becomes perfused. Ubiquitous sprouting was maintained by continuous VEGF-VEGFR2 signaling in endothelial cells delaying maturation until immediately before stages where vision becomes important for survival, leading to the unparalleled high density and lobular structure of this vasculature. Sprouting was throughout development limited to two dimensions by Bruchs membrane and the sclera at the anterior and posterior surfaces respectively. These novel cellular and molecular mechanisms underlying choriocapillaris development were recapitulated in mice. In conclusion, our findings reveal novel mechanisms underlying the development of the choriocapillaris during zebrafish and mouse development. These results may explain the uniquely high density and sheet-like organization of this vasculature.

    Download full text (pdf)
    fulltext
  • 12.
    Ali, Zaheer
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Islam, Anik
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Sherrell, Peter
    Imperial Coll London, England.
    Le-Moine, Mark
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Lolas, Georgios
    Univ Athens, Greece.
    Syrigos, Konstantinos
    Univ Athens, Greece.
    Rafat, Mehrdad
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Jensen, Lasse
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pharmacology.
    Adjustable delivery of pro-angiogenic FGF-2 by alginate: collagen microspheres2018In: BIOLOGY OPEN, ISSN 2046-6390, Vol. 7, no 3, article id UNSP bio027060Article in journal (Refereed)
    Abstract [en]

    Therapeutic induction of blood vessel growth (angiogenesis) in ischemic tissues holds great potential for treatment of myocardial infarction and stroke. Achieving sustained angiogenesis and vascular maturation has, however, been highly challenging. Here, we demonstrate that alginate: collagen hydrogels containing therapeutic, pro-angiogenic FGF-2, and formulated as microspheres, is a promising and clinically relevant vehicle for therapeutic angiogenesis. By titrating the amount of readily dissolvable and degradable collagen with more slowly degradable alginate in the hydrogel mixture, the degradation rates of the biomaterial controlling the release kinetics of embedded proangiogenic FGF-2 can be adjusted. Furthermore, we elaborate a microsphere synthesis protocol allowing accurate control over sphere size, also a critical determinant of degradation/release rate. As expected, alginate: collagen microspheres were completely biocompatible and did not cause any adverse reactions when injected in mice. Importantly, the amount of pro-angiogenic FGF-2 released from such microspheres led to robust induction of angiogenesis in zebrafish embryos similar to that achieved by injecting FGF-2-releasing cells. These findings highlight the use of microspheres constructed from alginate: collagen hydrogels as a promising and clinically relevant delivery system for pro-angiogenic therapy.

    Download full text (pdf)
    fulltext
  • 13.
    Ali, Zaheer
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Mukwaya, Anthonny
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Biesemeier, Antje
    Univ Tubingen, Germany.
    Ntzouni, Maria
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Ramskold, Daniel
    Karolinska Inst, Sweden.
    Giatrellis, Sarantis
    Karolinska Inst, Sweden.
    Mammadzada, Parviz
    Karolinska Inst, Sweden.
    Cao, Renhai
    Karolinska Inst, Sweden.
    Lennikov, Anton
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Univ Missouri, MO 65211 USA.
    Marass, Michele
    Max Planck Inst Lung and Heart Res, Germany.
    Gerri, Claudia
    Max Planck Inst Lung and Heart Res, Germany.
    Hildesjö, Camilla
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Taylor, Michael
    Univ Wisconsin, WI 53706 USA.
    Deng, Qiaolin
    Karolinska Inst, Sweden.
    Peebo, Beatrice
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Ophthalmology in Linköping. Bayer AB, Sweden.
    del Peso, Luis
    Universidad Autónoma de Madrid, Spain; Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM Madrid, Spain.
    Kvanta, Anders
    Karolinska Inst, Sweden.
    Sandberg, Rickard
    Karolinska Inst, Sweden.
    Schraermeyer, Ulrich
    Univ Tubingen, Germany.
    Andre, Helder
    Karolinska Inst, Sweden.
    Steffensen, John F.
    Univ Copenhagen, Denmark.
    Lagali, Neil
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Ophthalmology in Linköping.
    Cao, Yihai
    Karolinska Inst, Sweden.
    Kele, Julianna
    Karolinska Inst, Sweden.
    Jensen, Lasse
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pharmacology. Univ Autonoma Madrid, Spain; UAM, Spain.
    Intussusceptive Vascular Remodeling Precedes Pathological Neovascularization2019In: Arteriosclerosis, Thrombosis and Vascular Biology, ISSN 1079-5642, E-ISSN 1524-4636, Vol. 39, no 7, p. 1402-1418Article in journal (Refereed)
    Abstract [en]

    Objective—

    Pathological neovascularization is crucial for progression and morbidity of serious diseases such as cancer, diabetic retinopathy, and age-related macular degeneration. While mechanisms of ongoing pathological neovascularization have been extensively studied, the initiating pathological vascular remodeling (PVR) events, which precede neovascularization remains poorly understood. Here, we identify novel molecular and cellular mechanisms of preneovascular PVR, by using the adult choriocapillaris as a model.

    Approach and Results—

    Using hypoxia or forced overexpression of VEGF (vascular endothelial growth factor) in the subretinal space to induce PVR in zebrafish and rats respectively, and by analyzing choriocapillaris membranes adjacent to choroidal neovascular lesions from age-related macular degeneration patients, we show that the choriocapillaris undergo robust induction of vascular intussusception and permeability at preneovascular stages of PVR. This PVR response included endothelial cell proliferation, formation of endothelial luminal processes, extensive vesiculation and thickening of the endothelium, degradation of collagen fibers, and splitting of existing extravascular columns. RNA-sequencing established a role for endothelial tight junction disruption, cytoskeletal remodeling, vesicle- and cilium biogenesis in this process. Mechanistically, using genetic gain- and loss-of-function zebrafish models and analysis of primary human choriocapillaris endothelial cells, we determined that HIF (hypoxia-induced factor)-1α-VEGF-A-VEGFR2 signaling was important for hypoxia-induced PVR.

    Conclusions—

    Our findings reveal that PVR involving intussusception and splitting of extravascular columns, endothelial proliferation, vesiculation, fenestration, and thickening is induced before neovascularization, suggesting that identifying and targeting these processes may prevent development of advanced neovascular disease in the future.

    Visual Overview—

    An online visual overview is available for this article.

    Download full text (pdf)
    fulltext
  • 14.
    Alim, Abdul
    et al.
    Uppsala University, Sweden; Karolinska Institute, Sweden; Uppsala University, Sweden.
    Ackermann, Paul W.
    Karolinska Institute, Sweden; Karolinska University Hospital, Sweden.
    Eliasson, Pernilla
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Blomgran, Parmis
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Kristiansson, Per
    Uppsala University, Sweden.
    Pejler, Gunnar
    Uppsala University, Sweden; Swedish University of Agriculture Science, Sweden.
    Peterson, Magnus
    Uppsala University, Sweden.
    Increased mast cell degranulation and co-localization of mast cells with the NMDA receptor-1 during healing after Achilles tendon rupture2017In: Cell and Tissue Research, ISSN 0302-766X, E-ISSN 1432-0878, Vol. 370, no 3, p. 451-460Article in journal (Refereed)
    Abstract [en]

    The role of inflammation and the mechanism of tendon healing after rupture has historically been a matter of controversy. The purpose of the present study is to investigate the role of mast cells and their relation to the NMDA receptor-1 (a glutamate receptor) during healing after Achilles tendon rupture. Eight female Sprague Dawley rats had their right Achilles tendon transected. Three weeks after rupture, histological quantification of mast cell numbers and their state of degranulation was assessed by histochemistry. Co-localization of mast cell tryptase (a mast cell marker) and NMDA receptor-1 was determined by immunofluorescence. The intact left Achilles tendon was used as control. An increased number of mast cells and a higher proportion of degranulated mast cells were found in the healing Achilles tendon compared to the intact. In addition, increased co-localization of mast cell tryptase and NMDA receptor-1 was seen in the areas of myotendinous junction, mid-tendon proper and bone tendon junction of the healing versus the intact tendon. These findings introduce a possible role for mast cells in the healing phase after Achilles tendon rupture.

    Download full text (pdf)
    fulltext
  • 15. Order onlineBuy this publication >>
    Amirhosseini, Mehdi
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Aseptic Loosening of Orthopedic Implants: Osteoclastogenesis Regulation and Potential Therapeutics2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Aseptic loosening is the main cause of failure of orthopedic prostheses. With no pharmaceuticals to prevent or mitigate periprosthetic bone degradation, a surgery to replace the loose implant with a new one is the only choice to restore patients’ function. Most studies on mechanisms for aseptic loosening investigate wear debris particle-induced osteolysis. However, pathological loading conditions around unstable implants can also trigger osteoclast differentiation and bone loss.

    In the first study, global gene expression changes induced by mechanical instability of implants, and by titanium particles were compared in a validated rat model for aseptic loosening. Microarray analysis showed that similar signaling pathways and gene expression patterns are involved in particle- and instability-induced periprosthetic osteolysis with an early onset innate immune response as a hallmark of osteolysis induced by mechanical instability.

    Further, effects of potential therapeutics on restriction of excessive osteoclast differentiation were evaluated. Wnt signaling pathway is known to regulate bone remodeling. In the second study, effects of inactivation of glycogen synthase kinase 3 beta (GSK-3β), a negative regulator of canonical Wnt signaling, on instability-induced periprosthetic osteolysis were examined using our rat model for aseptic loosening. Inhibition of GSK-3β led to a decrease in osteoclast numbers in the periprosthetic bone tissue exposed to mechanical instability while osteoblast perimeter showed an increase. This was accompanied by higher bone volume fraction (BV/TV) in animals treated with the GSK-3β inhibitor.

    In the third study, potential beneficial effects of two selective inhibitors of cyclindependent kinase 8/19 (CDK8/19) on bone tissue were evaluated. CDK8/19 is a Mediator complex-associated transcriptional regulator involved in several signaling pathways. CDK8/19 inhibitors, mainly under investigation as treatments for tumors, are reported to enhance osteoblast differentiation and bone formation. We show in this study, for the first time, that inhibition of CDK8/19 led to marked suppression of osteoclast differentiation from bone marrow macrophages in vitro through disruption of the RANK signaling. In mouse primary osteoblasts downregulation of osteopontin mRNA, a negative regulator of mineralization, together with increased alkaline phosphatase activity and calcium deposition indicated that osteoblast mineralization was promoted by CDK8/19 inhibition. Moreover, local administration of a CDK8/19 inhibitor promoted cancellous bone regeneration in a rat model for bone healing.

    These studies contribute to better understanding of mechanisms behind mechanical instability-induced periprosthetic osteolysis and propose potential therapeutics to restrict bone loss with effects on both osteoclasts and osteoblasts.

    List of papers
    1. Mechanical instability and titanium particles induce similar transcriptomic changes in a rat model for periprosthetic osteolysis and aseptic loosening
    Open this publication in new window or tab >>Mechanical instability and titanium particles induce similar transcriptomic changes in a rat model for periprosthetic osteolysis and aseptic loosening
    2017 (English)In: Bone Reports, ISSN 2352-1872, Vol. 7, p. 17-25Article in journal (Refereed) Published
    Abstract [en]

    Wear debris particles released from prosthetic bearing surfaces and mechanical instability of implants are two main causes of periprosthetic osteolysis. While particle-induced loosening has been studied extensively, mechanisms through which mechanical factors lead to implant loosening have been less investigated. This study compares the transcriptional profiles associated with osteolysis in a rat model for aseptic loosening, induced by either mechanical instability or titanium particles. Rats were exposed to mechanical instability or titanium particles. After 15 min, 3, 48 or 120 h from start of the stimulation, gene expression changes in periprosthetic bone tissue was determined by microarray analysis. Microarray data were analyzed by PANTHER Gene List Analysis tool and Ingenuity Pathway Analysis (IPA). Both types of osteolytic stimulation led to gene regulation in comparison to unstimulated controls after 3, 48 or 120 h. However, when mechanical instability was compared to titanium particles, no gene showed a statistically significant difference (fold change = ± 1.5 and adjusted p-value = 0.05) at any time point. There was a remarkable similarity in numbers and functional classification of regulated genes. Pathway analysis showed several inflammatory pathways activated by both stimuli, including Acute Phase Response signaling, IL-6 signaling and Oncostatin M signaling. Quantitative PCR confirmed the changes in expression of key genes involved in osteolysis observed by global transcriptomics. Inflammatory mediators including interleukin (IL)-6, IL-1ß, chemokine (C-C motif) ligand (CCL)2, prostaglandin-endoperoxide synthase (Ptgs)2 and leukemia inhibitory factor (LIF) showed strong upregulation, as assessed by both microarray and qPCR. By investigating genome-wide expression changes we show that, despite the different nature of mechanical implant instability and titanium particles, osteolysis seems to be induced through similar biological and signaling pathways in this rat model for aseptic loosening. Pathways associated to the innate inflammatory response appear to be a major driver for osteolysis. Our findings implicate early restriction of inflammation to be critical to prevent or mitigate osteolysis and aseptic loosening of orthopedic implants.

    Place, publisher, year, edition, pages
    Elsevier, 2017
    Keywords
    Aseptic loosening; Implant; Instability; Microarray; Wear debris
    National Category
    Cell and Molecular Biology Orthopaedics
    Identifiers
    urn:nbn:se:liu:diva-146297 (URN)10.1016/j.bonr.2017.07.003 (DOI)28795083 (PubMedID)
    Available from: 2018-04-07 Created: 2018-04-07 Last updated: 2019-03-08
    2. GSK-3 beta inhibition suppresses instability-induced osteolysis by a dual action on osteoblast and osteoclast differentiation
    Open this publication in new window or tab >>GSK-3 beta inhibition suppresses instability-induced osteolysis by a dual action on osteoblast and osteoclast differentiation
    Show others...
    2018 (English)In: Journal of Cellular Physiology, ISSN 0021-9541, E-ISSN 1097-4652, Vol. 233, no 3, p. 2398-2408Article in journal (Refereed) Published
    Abstract [en]

    Currently, there are no medications available to treat aseptic loosening of orthopedic implants. Using osteoprotegerin fusion protein (OPG-Fc), we previously blocked instability-induced osteoclast differentiation and peri-prosthetic osteolysis. Wnt/beta-catenin signaling, which regulates OPG secretion from osteoblasts, also modulates the bone tissue response to mechanical loading. We hypothesized that activating Wnt/beta-catenin signaling by inhibiting glycogen synthase kinase-3 beta (GSK-3 beta) would reduce instability-induced bone loss through regulation of both osteoblast and osteoclast differentiation. We examined effects of GSK-3 beta inhibition on regulation of RANKL and OPG in a rat model of mechanical instability-induced peri-implant osteolysis. The rats were treated daily with a GSK-3 beta inhibitor, AR28 (20 mg/kg bw), for up to 5 days. Bone tissue and blood serum were assessed by qRT-PCR, immunohistochemistry, and ELISA on days 3 and 5, and by micro-CT on day 5. After 3 days of treatment with AR28, mRNA levels of beta-catenin, Runx2, Osterix, Col1 alpha 1, and ALP were increased leading to higher osteoblast numbers compared to vehicle-treated animals. BMP-2 and Wnt16 mRNA levels were downregulated by mechanical instability and this was rescued by GSK-3 beta inhibition. Osteoclast numbers were decreased significantly after 3 days of GSK-3 beta inhibition, which correlated with enhanced OPG mRNA expression. This was accompanied by decreased serum levels of TRAP5b on days 3 and 5. Treatment with AR28 upregulated osteoblast differentiation, while osteoclastogenesis was blunted, leading to increased bone mass by day 5. These data suggest that GSK-3 beta inactivation suppresses osteolysis through regulating both osteoblast and osteoclast differentiation in a rat model of instability-induced osteolysis.

    Place, publisher, year, edition, pages
    WILEY, 2018
    Keywords
    bone implant; GSK-3 beta; mechanical instability; osteolysis; Wnt signaling
    National Category
    Pharmacology and Toxicology
    Identifiers
    urn:nbn:se:liu:diva-148660 (URN)10.1002/jcp.26111 (DOI)000433519300056 ()28731198 (PubMedID)
    Note

    Funding Agencies|VINNOVA [2012-04409]; National Institutes of Health [AR056802]; Vetenskapsradet [K2014-7X-22506-01-3]; Swedish Research Council; Swedish Governmental Agency for Innovation Systems

    Available from: 2018-06-18 Created: 2018-06-18 Last updated: 2019-04-08
    3. Cyclin-dependent kinase 8/19 inhibition suppresses osteoclastogenesis by downregulating RANK and promotes osteoblast mineralization and cancellous bone healing.
    Open this publication in new window or tab >>Cyclin-dependent kinase 8/19 inhibition suppresses osteoclastogenesis by downregulating RANK and promotes osteoblast mineralization and cancellous bone healing.
    Show others...
    2019 (English)In: Journal of Cellular Physiology, ISSN 0021-9541, E-ISSN 1097-4652, Vol. 234, no 9, p. 16503-16516Article in journal (Refereed) Published
    Abstract [en]

    Cyclin-dependent kinase 8 (CDK8) is a mediator complex-associated transcriptional regulator that acts depending on context and cell type. While primarily under investigation as potential cancer therapeutics, some inhibitors of CDK8-and its paralog CDK19-have been reported to affect the osteoblast lineage and bone formation. This study investigated the effects of two selective CDK8/19 inhibitors on osteoclastogenesis and osteoblasts in vitro, and further evaluated how local treatment with a CDK8/19 inhibitor affects cancellous bone healing in rats. CDK8/19 inhibitors did not alter the proliferation of neither mouse bone marrow-derived macrophages (BMMs) nor primary mouse osteoblasts. Receptor activator of nuclear factor κΒ (NF-κB) ligand (RANKL)-induced osteoclastogenesis from mouse BMMs was suppressed markedly by inhibition of CDK8/19, concomitant with reduced tartrate-resistant acid phosphatase (TRAP) activity and C-terminal telopeptide of type I collagen levels. This was accompanied by downregulation of PU.1, RANK, NF-κB, nuclear factor of activated T-cells 1 (NFATc1), dendritic cell-specific transmembrane protein (DC-STAMP), TRAP, and cathepsin K in RANKL-stimulated BMMs. Downregulating RANK and its downstream signaling in osteoclast precursors enforce CDK8/19 inhibitors as anticatabolic agents to impede excessive osteoclastogenesis. In mouse primary osteoblasts, CDK8/19 inhibition did not affect differentiation but enhanced osteoblast mineralization by promoting alkaline phosphatase activity and downregulating osteopontin, a negative regulator of mineralization. In rat tibiae, a CDK8/19 inhibitor administered locally promoted cancellous bone regeneration. Our data indicate that inhibitors of CDK8/19 have the potential to develop into therapeutics to restrict osteolysis and enhance bone regeneration.

    Keywords
    CDK8, RANK, osteoblasts, osteoclasts
    National Category
    Cell and Molecular Biology Medicinal Chemistry
    Identifiers
    urn:nbn:se:liu:diva-154927 (URN)10.1002/jcp.28321 (DOI)000470174200186 ()30793301 (PubMedID)
    Note

    Funding agencies: Vetenskapsradet [521-2013-2593, 2016-06097, K2015-99x-10363-23-4, 2016-01822]; Swedish Research Council

    Available from: 2019-03-05 Created: 2019-03-05 Last updated: 2019-07-03
    Download full text (pdf)
    Aseptic Loosening of Orthopedic Implants: Osteoclastogenesis Regulation and Potential Therapeutics
    Download (png)
    presentationsbild
  • 16.
    Amirhosseini, Mehdi
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Andersson, Göran
    Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden.
    Aspenberg, Per
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Fahlgren, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Mechanical instability and titanium particles induce similar transcriptomic changes in a rat model for periprosthetic osteolysis and aseptic loosening2017In: Bone Reports, ISSN 2352-1872, Vol. 7, p. 17-25Article in journal (Refereed)
    Abstract [en]

    Wear debris particles released from prosthetic bearing surfaces and mechanical instability of implants are two main causes of periprosthetic osteolysis. While particle-induced loosening has been studied extensively, mechanisms through which mechanical factors lead to implant loosening have been less investigated. This study compares the transcriptional profiles associated with osteolysis in a rat model for aseptic loosening, induced by either mechanical instability or titanium particles. Rats were exposed to mechanical instability or titanium particles. After 15 min, 3, 48 or 120 h from start of the stimulation, gene expression changes in periprosthetic bone tissue was determined by microarray analysis. Microarray data were analyzed by PANTHER Gene List Analysis tool and Ingenuity Pathway Analysis (IPA). Both types of osteolytic stimulation led to gene regulation in comparison to unstimulated controls after 3, 48 or 120 h. However, when mechanical instability was compared to titanium particles, no gene showed a statistically significant difference (fold change = ± 1.5 and adjusted p-value = 0.05) at any time point. There was a remarkable similarity in numbers and functional classification of regulated genes. Pathway analysis showed several inflammatory pathways activated by both stimuli, including Acute Phase Response signaling, IL-6 signaling and Oncostatin M signaling. Quantitative PCR confirmed the changes in expression of key genes involved in osteolysis observed by global transcriptomics. Inflammatory mediators including interleukin (IL)-6, IL-1ß, chemokine (C-C motif) ligand (CCL)2, prostaglandin-endoperoxide synthase (Ptgs)2 and leukemia inhibitory factor (LIF) showed strong upregulation, as assessed by both microarray and qPCR. By investigating genome-wide expression changes we show that, despite the different nature of mechanical implant instability and titanium particles, osteolysis seems to be induced through similar biological and signaling pathways in this rat model for aseptic loosening. Pathways associated to the innate inflammatory response appear to be a major driver for osteolysis. Our findings implicate early restriction of inflammation to be critical to prevent or mitigate osteolysis and aseptic loosening of orthopedic implants.

    Download full text (pdf)
    fulltext
  • 17.
    Amirhosseini, Mehdi
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Bernhardsson, Magnus
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Lång, Pernilla
    Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden.
    Andersson, Göran
    Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden.
    Flygare, Johan
    Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden..
    Fahlgren, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Cyclin-dependent kinase 8/19 inhibition suppresses osteoclastogenesis by downregulating RANK and promotes osteoblast mineralization and cancellous bone healing.2019In: Journal of Cellular Physiology, ISSN 0021-9541, E-ISSN 1097-4652, Vol. 234, no 9, p. 16503-16516Article in journal (Refereed)
    Abstract [en]

    Cyclin-dependent kinase 8 (CDK8) is a mediator complex-associated transcriptional regulator that acts depending on context and cell type. While primarily under investigation as potential cancer therapeutics, some inhibitors of CDK8-and its paralog CDK19-have been reported to affect the osteoblast lineage and bone formation. This study investigated the effects of two selective CDK8/19 inhibitors on osteoclastogenesis and osteoblasts in vitro, and further evaluated how local treatment with a CDK8/19 inhibitor affects cancellous bone healing in rats. CDK8/19 inhibitors did not alter the proliferation of neither mouse bone marrow-derived macrophages (BMMs) nor primary mouse osteoblasts. Receptor activator of nuclear factor κΒ (NF-κB) ligand (RANKL)-induced osteoclastogenesis from mouse BMMs was suppressed markedly by inhibition of CDK8/19, concomitant with reduced tartrate-resistant acid phosphatase (TRAP) activity and C-terminal telopeptide of type I collagen levels. This was accompanied by downregulation of PU.1, RANK, NF-κB, nuclear factor of activated T-cells 1 (NFATc1), dendritic cell-specific transmembrane protein (DC-STAMP), TRAP, and cathepsin K in RANKL-stimulated BMMs. Downregulating RANK and its downstream signaling in osteoclast precursors enforce CDK8/19 inhibitors as anticatabolic agents to impede excessive osteoclastogenesis. In mouse primary osteoblasts, CDK8/19 inhibition did not affect differentiation but enhanced osteoblast mineralization by promoting alkaline phosphatase activity and downregulating osteopontin, a negative regulator of mineralization. In rat tibiae, a CDK8/19 inhibitor administered locally promoted cancellous bone regeneration. Our data indicate that inhibitors of CDK8/19 have the potential to develop into therapeutics to restrict osteolysis and enhance bone regeneration.

    Download full text (pdf)
    fulltext
  • 18.
    Andersson, Henrik
    et al.
    Linköping University, Faculty of Medicine and Health Sciences. Östergötlands Läns Landsting, Anaesthetics, Operations and Specialty Surgery Center, Department of Anaesthesiology and Intensive Care in Linköping. Linköping University, Department of Medical and Health Sciences, Division of Drug Research.
    Björnström-Karlsson, Karin
    Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Anaesthesiology and Intensive Care in Linköping. Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences.
    Eintrei, Christina
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Anaesthesiology and Intensive Care in Linköping.
    Sundqvist, Tommy
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Orexin A Phosphorylates the gamma-Aminobutyric Acid Type A Receptor beta(2) Subunit on a Serine Residue and Changes the Surface Expression of the Receptor in SH-SY5Y Cells Exposed to Propofol2015In: Journal of Neuroscience Research, ISSN 0360-4012, E-ISSN 1097-4547, Vol. 93, no 11, p. 1748-1755Article in journal (Refereed)
    Abstract [en]

    Propofol activates the gamma-aminobutyric acid type A receptor (GABA(A)R) and causes a reversible neurite retraction, leaving a thin, thread-like structure behind; it also reverses the transport of vesicles in rat cortical neurons. The awakening peptide orexin A (OA) inhibits this retraction via phospholipase D (PLD) and protein kinase CE (PKCE). The human SH-SY5Y cells express both GABA(A)Rs and orexin 1 and 2 receptors. These cells are used to examine the interaction between OA and the GABAAR. The effects of OA are studied with flow cytometry and immunoblotting. This study shows that OA stimulates phosphorylation on the serine residues of the GABA(A)R beta(2) subunit and that the phosphorylation is caused by the activation of PLD and PKCE. OA administration followed by propofol reduces the cell surface expression of the GABA(A)R, whereas propofol stimulation before OA increases the surface expression. The GABA(A)R beta(2) subunit is important for receptor recirculation, and the effect of OA on propofol-stimulated cells may be due to a disturbed recirculation of the GABA(A)R. (C) 2015 Wiley Periodicals, Inc.

  • 19.
    Andersson, Linnea I.
    et al.
    Linnaeus Univ, Sweden.
    Sjoestroem, Dick J.
    Linnaeus Univ, Sweden.
    Quach, Huy Quang
    Mayo Clin, MN 55905 USA.
    Haegerstroem, Kim
    Dept Clin Chem & Transfus Med, Sweden.
    Hurler, Lisa
    Semmelwe Univ, Hungary.
    Kajdacsi, Erika
    Semmelwe Univ, Hungary.
    Cervenak, Laszlo
    Semmelwe Univ, Hungary.
    Prohaszka, Zoltan
    Semmelwe Univ, Hungary.
    Toonen, Erik J. M.
    R&D Dept, Netherlands.
    Mohlin, Camilla
    Linnaeus Univ, Sweden.
    Mollnes, Tom Eirik
    Univ Oslo, Norway; Nordland Hosp, Norway.
    Sandgren, Per
    Karolinska Inst, Sweden.
    Tjernberg, Ivar
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection. Linköping University, Faculty of Medicine and Health Sciences. Dept Clin Chem & Transfus Med, Sweden.
    Nilsson, Per H.
    Linnaeus Univ, Sweden; Linnaeus Univ, Sweden.
    Storage of Transfusion Platelet Concentrates Is Associated with Complement Activation and Reduced Ability of Platelets to Respond to Protease-Activated Receptor-1 and Thromboxane A2 Receptor2024In: International Journal of Molecular Sciences, ISSN 1661-6596, E-ISSN 1422-0067, Vol. 25, no 2, article id 1091Article in journal (Refereed)
    Abstract [en]

    Platelet activation and the complement system are mutually dependent. Here, we investigated the effects of storage time on complement activation and platelet function in routinely produced platelet concentrates. The platelet concentrates (n = 10) were stored at 22 degrees C for seven days and assessed daily for complement and platelet activation markers. Additionally, platelet function was analyzed in terms of their responsiveness to protease-activated receptor-1 (PAR-1) and thromboxane A2 receptor (TXA(2)R) activation and their capacity to adhere to collagen. Complement activation increased over the storage period for all analyzed markers, including the C1rs/C1-INH complex (fold change (FC) = 1.9; p &lt; 0.001), MASP-1/C1-INH complex (FC = 2.0; p &lt; 0.001), C4c (FC = 1.8, p &lt; 0.001), C3bc (FC = 4.0; p &lt; 0.01), and soluble C5b-9 (FC = 1.7, p &lt; 0.001). Furthermore, the levels of soluble platelet activation markers increased in the concentrates over the seven-day period, including neutrophil-activating peptide-2 (FC = 2.5; p &lt; 0.0001), transforming growth factor beta 1 (FC = 1.9; p &lt; 0.001) and platelet factor 4 (FC = 2.1; p &lt; 0.0001). The ability of platelets to respond to activation, as measured by surface expression of CD62P and CD63, decreased by 19% and 24% (p &lt; 0.05) for PAR-1 and 69-72% (p &lt; 0.05) for TXA(2)R activation, respectively, on Day 7 compared to Day 1. The extent of platelet binding to collagen was not significantly impaired during storage. In conclusion, we demonstrated that complement activation increased during the storage of platelets, and this correlated with increased platelet activation and a reduced ability of the platelets to respond to, primarily, TXA(2)R activation.

  • 20.
    Andersson, Theresa
    Linköping University, Department of Physics, Measurement Technology, Biology and Chemistry. Linköping University, The Institute of Technology.
    Molecular recognition of proteins by functionalized folded polypeptide receptors2004Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis describes the design, synthesis and characterization of synthetic receptor molecules for the recognition and binding of proteins with applications in bioseparation and biosensing. A 42-residue polypeptide, designed to fold into a helix-loop-helix motif and dimerize in solution to form a four-helix bundle, was used as the scaffold. In the first part of the thesis it was functionalized by the incorporation of three substituents at the side chains of lysine residues. A library of 343 receptors was created and screened for affinity towards the human IgG fab fragment using SPR technology. The scaffold was reacted in a stepwise and combinatorial procedure with seven active esters in a pH controlled site-selective acylation reaction to form amides at the side chains of three lysine residues. Four receptor candidates were found to have 0.1 mM affinities and were selected for further investigation.

    Both the unfunctionalized scaffold and the four selected receptors were found to bind well also to HCA II and the molecular interactions with this target protein were studied in detail. NMR studies of their interactions with 15N-labeled HCA II revealed that the peptides bound to a hydrophobic patch near the active site cleft, and SPR studies of modified receptor polypeptides led to the conclusion that mainly hydrophobic interactions were involved in binding.

    In the second part of the thesis two scaffolds were functionalized with a benzenesulfonamide ligand linked to the scaffold by a series of aliphatic spacers of varying length. Benzenesulfonamide is a known inhibitor of HCA II with a dissociation constant of 1.5 µM and it was found that the overall affinity of the functionalized peptide was enhanced by increasing the length of the ligand spacer due to cooperativity between the scaffold and the ligand in the binding to HCA II. The receptor with a seven methylene group spacer bound HCA II with a dissociation constant of 4 n M. It was also shown that the sequence of the scaffold polypeptide strongly affected the overall affinity of the peptide conjugate for the target protein.

  • 21.
    Ansell - Schultz, Anna
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Reyes, Juan
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Samuelsson, My
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Reduced retromer function results in the accumulation of amyloid-beta oligomers2018In: Molecular and Cellular Neuroscience, ISSN 1044-7431, E-ISSN 1095-9327, Vol. 93, p. 18-26Article in journal (Refereed)
    Abstract [en]

    Alzheimers disease (AD) is a neurodegenerative disorder characterized by a progressive loss of multiple cognitive functions. Accumulation of amyloid beta oligomers (oA beta) play a major role in the neurotoxicity associated with the disease process. One of the early affected brain regions is the hippocampus, wherein a reduction of the vacuolar protein sorting-associated protein 35 (VPS35), the core protein comprising the retromer complex involved in cellular cargo sorting, has been identified. To investigate the role of the retromer function on the accumulation and clearance of oA beta, we reduced retromer function by selectively inhibiting VPS35 gene expression using siRNA in differentiated neuronal SH-SY5Y cells. As cell-to-cell transfer of oA beta to new brain regions is believed to be important for disease progression we investigated the effect of VPS35 reduction both in cells with direct uptake of oA beta and in cells receiving oA beta from donor cells. We demonstrate that reduced retromer function increases oA beta accumulation in both cell systems, both the number of cells containing intracellular oA beta and the amount within them. This effect was shown at different time points and regardless if the AD originated from the extracellular milieu or via a direct neuronal cell-to-cell transfer. Interestingly, not only did reduced VPS35 cause oA beta accumulation, but oA beta treatment alone also lead to a reduction of VPS35 protein content. The accumulated oA beta seems to co-localize with VPS35 and early endosome markers. Together, these findings provide evidence that reduced retromer function decreases the ability for neurons to transport and clear neurotoxic oA beta received through different routes resulting in the accumulation of oA beta. Thus, enhancing retromer function may be a potential therapeutic strategy to slow down the pathophysiology associated with the progression of AD.

  • 22.
    Armada Moreira, Adam
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. Int Sch Adv Studies, Italy.
    Manan Dar, Abdul Manan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Zhao, Zifang
    Columbia Univ, NY 10027 USA.
    Cea, Claudia
    Columbia Univ, NY 10027 USA.
    Gelinas, Jennifer
    Columbia Univ, NY 10032 USA.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Costa, Alex
    Univ Milan, Italy; Natl Res Council Italy CNR, Italy.
    Khodagholy, Dion
    Columbia Univ, NY 10027 USA.
    Stavrinidou, Eleni
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. Swedish Univ Agr Sci, Sweden.
    Plant electrophysiology with conformable organic electronics: Deciphering the propagation of Venus flytrap action potentials2023In: Science Advances, E-ISSN 2375-2548, Vol. 9, no 30, article id eadh4443Article in journal (Refereed)
    Abstract [en]

    Electrical signals in plants are mediators of long-distance signaling and correlate with plant movements and responses to stress. These signals are studied with single surface electrodes that cannot resolve signal propagation and integration, thus impeding their decoding and link to function. Here, we developed a conformable multielectrode array based on organic electronics for large-scale and high-resolution plant electrophysiology. We performed precise spatiotemporal mapping of the action potential (AP) in Venus flytrap and found that the AP actively propagates through the tissue with constant speed and without strong directionality. We also found that spontaneously generated APs can originate from unstimulated hairs and that they correlate with trap movement. Last, we demonstrate that the Venus flytrap circuitry can be activated by cells other than the sensory hairs. Our work reveals key properties of the AP and establishes the capacity of organic bioelectronics for resolving electrical signaling in plants contributing to the mechanistic understanding of long-distance responses in plants.

  • 23.
    Armstrong, Andrea
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Mattsson, Niklas
    Sahlgrens University Hospital, Sweden University of Calif San Francisco, CA 94143 USA .
    Appelqvist, Hanna
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Janefjord, Camilla
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Sandin, Linnea
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Agholme, Lotta
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Olsson, Bob
    Sahlgrens University Hospital, Sweden .
    Svensson, Samuel
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences. AlzeCure Fdn.
    Blennow, Kaj
    Sahlgrens University Hospital, Sweden .
    Zetterberg, Henrik
    Sahlgrens University Hospital, Sweden UCL Institute Neurol, England .
    Kågedal, Katarina
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Lysosomal Network Proteins as Potential Novel CSF Biomarkers for Alzheimers Disease2014In: Neuromolecular medicine, ISSN 1535-1084, E-ISSN 1559-1174, Vol. 16, no 1, p. 150-160Article in journal (Refereed)
    Abstract [en]

    The success of future intervention strategies for Alzheimers disease (AD) will likely rely on the development of treatments starting early in the disease course, before irreversible brain damage occurs. The pre-symptomatic stage of AD occurs at least one decade before the clinical onset, highlighting the need for validated biomarkers that reflect this early period. Reliable biomarkers for AD are also needed in research and clinics for diagnosis, patient stratification, clinical trials, monitoring of disease progression and the development of new treatments. Changes in the lysosomal network, i.e., the endosomal, lysosomal and autophagy systems, are among the first alterations observed in an AD brain. In this study, we performed a targeted search for lysosomal network proteins in human cerebrospinal fluid (CSF). Thirty-four proteins were investigated, and six of them, early endosomal antigen 1 (EEA1), lysosomal-associated membrane proteins 1 and 2 (LAMP-1, LAMP-2), microtubule-associated protein 1 light chain 3 (LC3), Rab3 and Rab7, were significantly increased in the CSF from AD patients compared with neurological controls. These results were confirmed in a validation cohort of CSF samples, and patients with no neurochemical evidence of AD, apart from increased total-tau, were found to have EEA1 levels corresponding to the increased total-tau levels. These findings indicate that increased levels of LAMP-1, LAMP-2, LC3, Rab3 and Rab7 in the CSF might be specific for AD, and increased EEA1 levels may be a sign of general neurodegeneration. These six lysosomal network proteins are potential AD biomarkers and may be used to investigate lysosomal involvement in AD pathogenesis.

    Download full text (pdf)
    fulltext
  • 24.
    Aronsson, Christopher
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Jury, Michael
    Linköping University, Department of Physics, Chemistry and Biology, Biophysics and bioengineering. Linköping University, Faculty of Science & Engineering.
    Naeimipour, Sajjad
    Linköping University, Department of Physics, Chemistry and Biology, Biophysics and bioengineering. Linköping University, Faculty of Science & Engineering.
    Rasti Boroojeni, Fatemeh
    Linköping University, Department of Physics, Chemistry and Biology, Biophysics and bioengineering. Linköping University, Faculty of Science & Engineering.
    Christoffersson, Jonas
    Linköping University, Department of Physics, Chemistry and Biology, Biotechnology. Linköping University, Faculty of Science & Engineering. Univ Skovde, Sweden.
    Lifwergren, Philip
    Linköping University, Department of Physics, Chemistry and Biology, Biophysics and bioengineering. Linköping University, Faculty of Science & Engineering.
    Mandenius, Carl-Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Biophysics and bioengineering. Linköping University, Faculty of Science & Engineering.
    Selegård, Robert
    Linköping University, Department of Physics, Chemistry and Biology, Biophysics and bioengineering. Linköping University, Faculty of Science & Engineering.
    Aili, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Biophysics and bioengineering. Linköping University, Faculty of Science & Engineering.
    Dynamic peptide-folding mediated biofunctionalization and modulation of hydrogels for 4D bioprinting2020In: Biofabrication, ISSN 1758-5082, E-ISSN 1758-5090, Vol. 12, no 3, article id 035031Article in journal (Refereed)
    Abstract [en]

    Hydrogels are used in a wide range of biomedical applications, including three-dimensional (3D) cell culture, cell therapy and bioprinting. To enable processing using advanced additive fabrication techniques and to mimic the dynamic nature of the extracellular matrix (ECM), the properties of the hydrogels must be possible to tailor and change over time with high precision. The design of hydrogels that are both structurally and functionally dynamic, while providing necessary mechanical support is challenging using conventional synthesis techniques. Here, we show a modular and 3D printable hydrogel system that combines a robust but tunable covalent bioorthogonal cross-linking strategy with specific peptide-folding mediated interactions for dynamic modulation of cross-linking and functionalization. The hyaluronan-based hydrogels were covalently cross-linked by strain-promoted alkyne-azide cycloaddition using multi-arm poly(ethylene glycol). In addition, ade novodesigned helix-loop-helix peptide was conjugated to the hyaluronan backbone to enable specific peptide-folding modulation of cross-linking density and kinetics, and hydrogel functionality. An array of complementary peptides with different functionalities was developed and used as a toolbox for supramolecular tuning of cell-hydrogel interactions and for controlling enzyme-mediated biomineralization processes. The modular peptide system enabled dynamic modifications of the properties of 3D printed structures, demonstrating a novel route for design of more sophisticated bioinks for four-dimensional bioprinting.

    Download full text (pdf)
    fulltext
  • 25.
    Aslan, Cynthia
    et al.
    Tabriz Univ Med Sci, Iran.
    Maralbashi, Sepideh
    Kermanshah Univ Med Sci, Iran.
    Salari, Farhad
    Kermanshah Univ Med Sci, Iran.
    Kahroba, Houman
    Tabriz Univ Med Sci, Iran.
    Sigaroodi, Faraz
    Tabriz Univ Med Sci, Iran.
    Kazemi, Tohid
    Tabriz Univ Med Sci, Iran.
    Kharaziha, Pedram
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical genetics.
    Tumor-derived exosomes: Implication in angiogenesis and antiangiogenesis cancer therapy2019In: Journal of Cellular Physiology, ISSN 0021-9541, E-ISSN 1097-4652, Vol. 234, no 10, p. 16885-16903Article, review/survey (Refereed)
    Abstract [en]

    Tumor cells utilize different strategies to communicate with neighboring tissues for facilitating tumor progression and invasion, one of these strategies has been shown to be the release of exosomes. Exosomes are small nanovesicles secreted by all kind of cells in the body, especially cancer cells, and mediate cell to cell communications. Exosomes play an important role in cancer invasiveness by harboring various cargoes that could accelerate angiogenesis. Here first, we will present an overview of exosomes, their biology, and their function in the body. Then, we will focus on exosomes derived from tumor cells as tumor angiogenesis mediators with a particular emphasis on the underlying mechanisms in various cancer origins. Also, exosomes derived from stem cells and tumor-associated macrophages will be discussed in this regard. Finally, we will discuss the novel therapeutic strategies of exosomes as drug delivery vehicles against angiogenesis.

  • 26.
    Astroem-Oisson, Karin
    et al.
    Sahlgrens Univ Hosp, Sweden; Gothenburg Univ, Sweden.
    Karlsson, Lars
    Sahlgrens Univ Hosp, Sweden; Gothenburg Univ, Sweden.
    Hulten, Lillemor Mattsson
    Sahlgrens Univ Hosp, Sweden; Gothenburg Univ, Sweden.
    Davidsson, Pia
    AstraZeneca R&D, Sweden.
    Mantovani, Vittorio
    Univ Insubria, Italy.
    Mansson, Chrichan
    Sahlgrens Univ Hosp, Sweden.
    Olofsson, Sven-Olof
    Sahlgrens Univ Hosp, Sweden; Sahlgrens Univ Hosp, Sweden; Gothenburg Univ, Sweden.
    Wiklund, Olov
    Sahlgrens Univ Hosp, Sweden; Sahlgrens Univ Hosp, Sweden; Gothenburg Univ, Sweden.
    Grip, Lars
    Sahlgrens Univ Hosp, Sweden; Gothenburg Univ, Sweden.
    Myocardial release of FKBP12 and increased production of FKBP12.6 in ischemia and reperfusion experimental models2009In: Biochemical and Biophysical Research Communications - BBRC, ISSN 0006-291X, E-ISSN 1090-2104, Vol. 390, no 4, p. 1299-1304Article in journal (Refereed)
    Abstract [en]

    Background: Coronary artery occlusion and reperfusion may trigger reversible and irreversible ischemic and reperfusion injury. The primary aim of this study was to evaluate protein release into the myocardium in a porcine model during ischemia and reperfusion to search for clarifying models for reperfusion injury and secondarily to investigate release and production of the immunophilins FKBP12/12.6 in this model and in cell cultures. Methods: In a porcine model local myocardial ischemia was induced during 45 min followed by 120 min of reperfusion. Microdialysis samples from ischemic and non-ischemic areas were analyzed with surface-enhanced laser desorption ionization (SELDI) mass spectrometry (MS) and Western blotting (WB). Myocardial biopsies from areas at risk and control areas were analyzed with reverse transcription polymerase chain reaction (RT-PCR). Myocardial cell cultures from mice (HL-1 cells) were exposed to hypoxia and then analyzed with WB and RT-PCR. Results: FK binding protein12 (FKBP12), ubiquitin and myoglobin were identified as being released during ischemia and reperfusion in microdialysates. RT-PCR analysis on the biopsies after ischemia revealed a non-significant increase in mRNA expression of FKBP12 and a significant increase in mRNA expression of FKBP12.6. Lysates from HL-1 cells exposed to hypoxia demonstrated increase of FKBP12 and a significant increase in mRNA expression of FKBP12.6. Conclusion: In a myocardial ischemic-reperfusion porcine model as well as in hypoxic HL-1 cells, release of FKBP12 and increased production of FKBP12.6 was demonstrated. The findings indicate important mechanisms related to these immunophilins in the reaction to ischemia/hypoxia and reperfusion in the heart. (C) 2009 Elsevier Inc. All rights reserved.

  • 27.
    Azim, Kasum
    et al.
    Brain Research Institute, University of Zürich/ETHZ, Zürich, Switzerland.
    Fischer, Bruno
    Brain Research Institute, University of Zürich/ETHZ, Zürich, Switzerland.
    Hurtado-Chong, Anahi
    Brain Research Institute, University of Zürich/ETHZ, Zürich, Switzerland.
    Draganova, Kalina
    Institute of Anatomy, University of Zürich, Switzerland.
    Cantù, Claudio
    Institute of Molecular Life Sciences, University of Zürich, Switzerland.
    Zemke, Martina
    Institute of Anatomy, University of Zürich, Switzerland.
    Sommer, Lukas
    Institute of Anatomy, University of Zürich, Switzerland.
    Butt, Arthur
    Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, Portsmouth University, United Kingdom.
    Raineteau, Olivier
    Brain Research Institute, University of Zürich/ETHZ, Zürich, Switzerland / Stem Cell and Brain Research Institute, INSERMU846, Lyon, France, Universite de Lyon,Universite Lyon, France.
    Persistent Wnt/β‐Catenin Signaling Determines Dorsalization of the Postnatal Subventricular Zone and Neural Stem Cell Specification into Oligodendrocytes and Glutamatergic Neurons2014In: Stem Cells, ISSN 1066-5099, E-ISSN 1549-4918, Vol. 32, no 5, p. 1301-1312Article in journal (Refereed)
    Abstract [en]

    In the postnatal and adult central nervous system (CNS), the subventricular zone (SVZ) of the forebrain is the main source of neural stem cells (NSCs) that generate olfactory neurons and oligodendrocytes (OLs), the myelinating cells of the CNS. Here, we provide evidence of a primary role for canonical Wnt/β-catenin signaling in regulating NSC fate along neuronal and oligodendroglial lineages in the postnatal SVZ. Our findings demonstrate that glutamatergic neuronal precursors (NPs) and oligodendrocyte precursors (OPs) are derived strictly from the dorsal SVZ (dSVZ) microdomain under the control of Wnt/β-catenin, whereas GABAergic NPs are derived mainly from the lateral SVZ (lSVZ) microdomain independent of Wnt/β-catenin. Transcript analysis of microdissected SVZ microdomains revealed that canonical Wnt/β-catenin signaling was more pronounced in the dSVZ microdomain. This was confirmed using the β-catenin-activated Wnt-reporter mouse and by pharmacological stimulation of Wnt/β-catenin by infusion of the specific glycogen synthase kinase 3β inhibitor, AR-A014418, which profoundly increased the generation of cycling cells. In vivo genetic/pharmacological stimulation or inhibition of Wnt/β-catenin, respectively, increased and decreased the differentiation of dSVZ-NSCs into glutamatergic NPs, and had a converse effect on GABAergic NPs. Activation of Wnt/β-catenin dramatically stimulated the generation of OPs, but its inhibition had no effect, indicating other factors act in concert with Wnt/β-catenin to fine tune oligodendrogliogenesis in the postnatal dSVZ. These results demonstrate a role for Wnt/β-catenin signaling within the dorsal microdomain of the postnatal SVZ, in regulating the genesis of glutamatergic neurons and OLs.

  • 28.
    Babbin, Brian A.
    et al.
    Epithelial Pathobiology Research Unit, the Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia.
    Koch, Stefan
    Epithelial Pathobiology Research Unit, the Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia.
    Bachar, Moshe
    Epithelial Pathobiology Research Unit, the Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia.
    Conti, Mary-Anne
    Laboratory of Molecular Cardiology, the National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, Maryland.
    Parkos, Charles A.
    Epithelial Pathobiology Research Unit, the Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia.
    Adelstein, Robert S.
    Laboratory of Molecular Cardiology, the National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, Maryland.
    Nusrat, Asma
    Epithelial Pathobiology Research Unit, the Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia.
    Ivanov, Andrei I.
    Epithelial Pathobiology Research Unit, the Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia; Gastroenterology and Hepatology Division, Department of Medicine, The University of Rochester, Rochester New York.
    Non-muscle myosin IIA differentially regulates intestinal epithelial cell restitution and matrix invasion2009In: American Journal of Pathology, ISSN 0002-9440, E-ISSN 1525-2191, Vol. 174, no 2, p. 436-448Article in journal (Refereed)
    Abstract [en]

    Epithelial cell motility is critical for self-rejuvenation of normal intestinal mucosa, wound repair, and cancer metastasis. This process is regulated by the reorganization of the F-actin cytoskeleton, which is driven by a myosin II motor. However, the role of myosin II in regulating epithelial cell migration remains poorly understood. This study addressed the role of non-muscle myosin (NM) IIA in two different modes of epithelial cell migration: two-dimensional (2-D) migration that occurs during wound closure and three-dimensional (3-D) migration through a Matrigel matrix that occurs during cancer metastasis. Pharmacological inhibition or siRNA-mediated knockdown of NM IIA in SK-CO15 human colonic epithelial cells resulted in decreased 2-D migration and increased 3-D invasion. The attenuated 2-D migration was associated with increased cell adhesiveness to collagen and laminin and enhanced expression of beta1-integrin and paxillin. On the 2-D surface, NM IIA-deficient SK-CO15 cells failed to assemble focal adhesions and F-actin stress fibers. In contrast, the enhanced invasion of NM IIA-depleted cells was dependent on Raf-ERK1/2 signaling pathway activation, enhanced calpain activity, and increased calpain-2 expression. Our findings suggest that NM IIA promotes 2-D epithelial cell migration but antagonizes 3-D invasion. These observations indicate multiple functions for NM IIA, which, along with the regulation of the F-actin cytoskeleton and cell-matrix adhesions, involve previously unrecognized control of intracellular signaling and protein expression.

  • 29.
    Babbin, Brian A.
    et al.
    Epithelial Pathobiology Research Unit, Department of Pathology, Emory University, Atlanta, GA, USA.
    Laukoetter, Mike G.
    Department of General Surgery, University of Muenster, Muenster, Germany.
    Nava, Porfirio
    Epithelial Pathobiology Research Unit, Department of Pathology, Emory University, Atlanta, GA, USA.
    Koch, Stefan
    Epithelial Pathobiology Research Unit, Department of Pathology, Emory University, Atlanta, GA, USA.
    Lee, Winston Y.
    Epithelial Pathobiology Research Unit, Department of Pathology, Emory University, Atlanta, GA, USA.
    Capaldo, Christopher T.
    Epithelial Pathobiology Research Unit, Department of Pathology, Emory University, Atlanta, GA, USA.
    Peatman, Eric
    Epithelial Pathobiology Research Unit, Department of Pathology, Emory University, Atlanta, GA, USA.
    Severson, Eric A.
    Epithelial Pathobiology Research Unit, Department of Pathology, Emory University, Atlanta, GA, USA.
    Flower, Roderick J.
    The William Harvey Research Institute, Barts and The London School of Medicine, London, United Kingdom.
    Perretti, Mauro
    The William Harvey Research Institute, Barts and The London School of Medicine, London, United Kingdom.
    Parkos, Charles A.
    Epithelial Pathobiology Research Unit, Department of Pathology, Emory University, Atlanta, GA, USA.
    Nusrat, Asma
    Epithelial Pathobiology Research Unit, Department of Pathology, Emory University, Atlanta, GA, USA.
    Annexin A1 regulates intestinal mucosal injury, inflammation, and repair2008In: Journal of Immunology, ISSN 0022-1767, E-ISSN 1550-6606, J Immunol, Vol. 181, no 7, p. 5035-5044Article in journal (Refereed)
    Abstract [en]

    During mucosal inflammation, a complex array of proinflammatory and protective mechanisms regulates inflammation and severity of injury. Secretion of anti-inflammatory mediators is a mechanism that is critical in controlling inflammatory responses and promoting epithelial restitution and barrier recovery. AnxA1 is a potent anti-inflammatory protein that has been implicated to play a critical immune regulatory role in models of inflammation. Although AnxA1 has been shown to be secreted in intestinal mucosal tissues during inflammation, its potential role in modulating the injury/inflammatory response is not understood. In this study, we demonstrate that AnxA1-deficient animals exhibit increased susceptibility to dextran sulfate sodium (DSS)-induced colitis with greater clinical morbidity and histopathologic mucosal injury. Furthermore, impaired recovery following withdrawal of DSS administration was observed in AnxA1 (-/-) animals compared with wild-type (WT) control mice that was independent of inflammatory cell infiltration. Since AnxA1 exerts its anti-inflammatory properties through stimulation of ALX/FPRL-1, we explored the role of this receptor-ligand interaction in regulating DSS-induced colitis. Interestingly, treatment with an ALX/FPRL-1 agonist, 15-epi-lipoxin A4 reversed the enhanced sensitivity of AnxA1 (-/-) mice to DSS colitis. In contrast, 15-epi-lipoxin A4 did not significantly improve the severity of disease in WT animals. Additionally, differential expression of ALX/FPLR-1 in control and DSS-treated WT and AnxA1-deficient animals suggested a potential role for AnxA1 in regulating ALX/FPRL-1 expression under pathophysiological conditions. Together, these results support a role of endogenous AnxA1 in the protective and reparative properties of the intestinal mucosal epithelium.

  • 30.
    Badam, Tejaswi
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Bioinformatics. Linköping University, Faculty of Science & Engineering. Skovde Univ, Sweden.
    Hellberg, Sandra
    Linköping University, Department of Physics, Chemistry and Biology, Bioinformatics. Linköping University, Faculty of Science & Engineering.
    Bhai Mehta, Ratnesh
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection. Linköping University, Faculty of Medicine and Health Sciences.
    Lechner-Scott, Jeannette
    Univ Newcastle, Australia; Hunter Med Res Inst, Australia; John Hunter Hosp, Australia.
    Lea, Rodney A.
    Univ Newcastle, Australia; Hunter Med Res Inst, Australia; Queensland Univ Technol, Australia.
    Tost, Jorg
    CEA Inst Biol Francois Jacob, France.
    Mariette, Xavier
    Univ Paris Saclay, France.
    Svensson-Arvelund, Judit
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection. Linköping University, Faculty of Medicine and Health Sciences.
    Nestor, Colm
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Children's and Women's Health. Linköping University, Faculty of Medicine and Health Sciences.
    Benson, Mikael
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Children's and Women's Health. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center of Paediatrics and Gynaecology and Obstetrics, H.K.H. Kronprinsessan Victorias barn- och ungdomssjukhus.
    Berg, Göran
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Children's and Women's Health. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center of Paediatrics and Gynaecology and Obstetrics, Department of Gynaecology and Obstetrics in Linköping.
    Jenmalm, Maria
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection. Linköping University, Faculty of Medicine and Health Sciences.
    Gustafsson, Mika
    Linköping University, Department of Physics, Chemistry and Biology, Bioinformatics. Linköping University, Faculty of Science & Engineering.
    Ernerudh, Jan
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Immunology and Transfusion Medicine.
    CD4(+) T-cell DNA methylation changes during pregnancy significantly correlate with disease-associated methylation changes in autoimmune diseases2022In: Epigenetics, ISSN 1559-2294, E-ISSN 1559-2308, Vol. 17, no 9, p. 1040-1055Article in journal (Refereed)
    Abstract [en]

    Epigenetics may play a central, yet unexplored, role in the profound changes that the maternal immune system undergoes during pregnancy and could be involved in the pregnancy-induced modulation of several autoimmune diseases. We investigated changes in the methylome in isolated circulating CD4(+) T-cells in non-pregnant and pregnant women, during the 1(st) and 2(nd) trimester, using the Illumina Infinium Human Methylation 450K array, and explored how these changes were related to autoimmune diseases that are known to be affected during pregnancy. Pregnancy was associated with several hundreds of methylation differences, particularly during the 2(nd) trimester. A network-based modular approach identified several genes, e.g., CD28, FYN, VAV1 and pathways related to T-cell signalling and activation, highlighting T-cell regulation as a central component of the observed methylation alterations. The identified pregnancy module was significantly enriched for disease-associated methylation changes related to multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus. A negative correlation between pregnancy-associated methylation changes and disease-associated changes was found for multiple sclerosis and rheumatoid arthritis, diseases that are known to improve during pregnancy whereas a positive correlation was found for systemic lupus erythematosus, a disease that instead worsens during pregnancy. Thus, the directionality of the observed changes is in line with the previously observed effect of pregnancy on disease activity. Our systems medicine approach supports the importance of the methylome in immune regulation of T-cells during pregnancy. Our findings highlight the relevance of using pregnancy as a model for understanding and identifying disease-related mechanisms involved in the modulation of autoimmune diseases.

    Download full text (pdf)
    fulltext
  • 31. Order onlineBuy this publication >>
    Bahrampour, Shahrzad
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Genetic mechanisms regulating proliferation and cell specification in the Drosophila embryonic CNS2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The central nervous system (CNS) consists of an enormous number of cells, and large cellular variance, integrated into an elaborate network. The CNS is the most complex animal organ, and therefore its establishment must be controlled by many different genetic programs. Considering the high level of complexity in the human CNS, addressing issues related to human neurodevelopment represents a major challenge. Since comparative studies have revealed that neurodevelopmental programs are well conserved through evolution, on both the genetic and functional levels, studies on invertebrate neurodevelopmental programs are often translatable to vertebrates. Indeed, the basis of our current knowledge about vertebrate CNS development has been greatly aided by studies on invertebrates, and in particular on the Drosophila melanogaster (fruit fly) model system.

    This thesis attempted to identify novel genes regulating neural cell specification and proliferation in the CNS, using the Drosophila model system. Moreover, I aimed to address how those genes govern neural progenitor cells (neuroblasts; NBs) to obtain/maintain their stemness identity and proliferation capacity, and how they drive NBs through temporal windows and series of programmed asymmetric division, which gradually reduces their stemness identity in favor of neural differentiation, resulting in appropriate lineage progression. In the first project, we conducted a forward genetic screen in Drosophila embryos, aimed at isolating genes involved in regulation of neural proliferation and specification, at the single cell resolution. By taking advantage of the restricted expression of the neuropeptide FMRFa in the last-born cell of the NB lineage 5-6T, the Ap4 neuron, we could monitor the entire lineage progression. This screen succeeded in identifying 43 novel genes controlling different aspects of CNS development. One of the genes isolated, Ctr9, displayed extra Ap4/FMRFa neurons. Ctr9 encodes a component of the RNA polymerase II complex Paf1, which is involved in a number of transcriptional processes. The Paf1C, including Ctr9, is highly conserved from yeast to human, and in the past couple of years, its importance for transcription has become increasingly appreciated. However, studies in the Drosophila system have been limited. In the screen, we isolated the first mutant of Drosophila Ctr9 and conducted the first detailed phenotypic study on its function in the Drosophila embryonic CNS. Loss of function of Ctr9 leads to extra NB numbers, higher proliferation ratio and lower expression of neuropeptides. Gene expression analysis identified several other genes regulated by Ctr9, which may explain the Ctr9 mutant phenotypes. In summary, we identified Ctr9 as an essential gene for proper CNS development in Drosophila, and this provides a platform for future study on the Drosophila Paf1C. Another interesting gene isolated in the screen was worniou (wor), a member of the Snail family of transcription factors. In contrast to Ctr9, whichdisplayed additional Ap4/FMRFa neurons, wor mutants displayed a loss of these neurons. Previous studies in our group have identified many genes acting to stop NB lineage progression, but how NBs are pushed to proliferate and generate their lineages was not well known. Since wor may constitute a “driver” of proliferation, we decided to study it further. Also, we identified five other transcription factors acting together with Wor as pro-proliferative in both NBs and their daughter cells. These “drivers” are gradually replaced by the previously identified late-acting “stoppers.” Early and late factors regulate each other and the cell cycle, and thereby orchestrate proper neural lineage progression.

    List of papers
    1. Novel Genes Involved in Controlling Specification of Drosophila FMRFamide Neuropeptide Cells
    Open this publication in new window or tab >>Novel Genes Involved in Controlling Specification of Drosophila FMRFamide Neuropeptide Cells
    Show others...
    2015 (English)In: Genetics, ISSN 0016-6731, E-ISSN 1943-2631, Vol. 200, no 4, p. 1229-1244Article in journal (Refereed) Published
    Abstract [en]

    The expression of neuropeptides is often extremely restricted in the nervous system, making them powerful markers for addressing cell specification . In the developing Drosophila ventral nerve cord, only six cells, the Ap4 neurons, of some 10,000 neurons, express the neuropeptide FMRFamide (FMRFa). Each Ap4/FMRFa neuron is the last-born cell generated by an identifiable and well-studied progenitor cell, neuroblast 5-6 (NB5-6T). The restricted expression of FMRFa and the wealth of information regarding its gene regulation and Ap4 neuron specification makes FMRFa a valuable readout for addressing many aspects of neural development, i.e., spatial and temporal patterning cues, cell cycle control, cell specification, axon transport, and retrograde signaling. To this end, we have conducted a forward genetic screen utilizing an Ap4-specific FMRFa-eGFP transgenic reporter as our readout. A total of 9781 EMS-mutated chromosomes were screened for perturbations in FMRFa-eGFP expression, and 611 mutants were identified. Seventy-nine of the strongest mutants were mapped down to the affected gene by deficiency mapping or whole-genome sequencing. We isolated novel alleles for previously known FMRFa regulators, confirming the validity of the screen. In addition, we identified novel essential genes, including several with previously undefined functions in neural development. Our identification of genes affecting most major steps required for successful terminal differentiation of Ap4 neurons provides a comprehensive view of the genetic flow controlling the generation of highly unique neuronal cell types in the developing nervous system.

    Place, publisher, year, edition, pages
    Genetics Society of America, 2015
    Keywords
    Drosophila; CNS development; neural cell fate specification; forward genetic screening; FMRFamide
    National Category
    Clinical Medicine
    Identifiers
    urn:nbn:se:liu:diva-121318 (URN)10.1534/genetics.115.178483 (DOI)000359917000020 ()26092715 (PubMedID)
    Available from: 2015-09-16 Created: 2015-09-14 Last updated: 2019-03-13Bibliographically approved
    2. Ctr9, a Key Component of the Paf1 Complex, Affects Proliferation and Terminal Differentiation in the Developing Drosophila Nervous System
    Open this publication in new window or tab >>Ctr9, a Key Component of the Paf1 Complex, Affects Proliferation and Terminal Differentiation in the Developing Drosophila Nervous System
    2016 (English)In: G3: Genes, Genomes, Genetics, E-ISSN 2160-1836, Vol. 6, no 10, p. 3229-3239Article in journal (Refereed) Published
    Abstract [en]

    The Paf1 protein complex (Paf1C) is increasingly recognized as a highly conserved and broadly utilized regulator of a variety of transcriptional processes. These include the promotion of H3K4 and H3K36 trimethylation, H2BK123 ubiquitination, RNA Pol II transcriptional termination, and also RNA-mediated gene silencing. Paf1C contains five canonical protein components, including Paf1 and Ctr9, which are critical for overall complex integrity, as well as Rtf1, Leo1, and Cdc73/Parafibromin(Hrpt2)/Hyrax. In spite of a growing appreciation for the importance of Paf1C from yeast and mammalian studies, there has only been limited work in Drosophila. Here, we provide the first detailed phenotypic study of Ctr9 function in Drosophila. We found that Ctr9 mutants die at late embryogenesis or early larval life, but can be partly rescued by nervous system reexpression of Ctr9. We observed a number of phenotypes in Ctr9 mutants, including increased neuroblast numbers, increased nervous system proliferation, as well as downregulation of many neuropeptide genes. Analysis of cell cycle and regulatory gene expression revealed upregulation of the E2f1 cell cycle factor, as well as changes in Antennapedia and Grainy head expression. We also found reduction of H3K4me3 modification in the embryonic nervous system. Genome-wide transcriptome analysis points to additional downstream genes that may underlie these Ctr9 phenotypes, revealing gene expression changes in Notch pathway target genes, cell cycle genes, and neuropeptide genes. In addition, we find significant effects on the gene expression of metabolic genes. These findings reveal that Ctr9 is an essential gene that is necessary at multiple stages of nervous system development, and provides a starting point for future studies of the Paf1C in Drosophila.

    Place, publisher, year, edition, pages
    Genetics Society of America, 2016
    Keywords
    neuroblast, lineage tree, cell cycle, epigenetics, terminal differentiation, FlyBook
    National Category
    Genetics
    Identifiers
    urn:nbn:se:liu:diva-132856 (URN)10.1534/g3.116.034231 (DOI)000386581200018 ()27520958 (PubMedID)
    Note

    Funding Agencies|Swedish Research Council [621-2013-5258]; Knut and Alice Wallenberg Foundation [KAW2011.0165]; Swedish Cancer Foundation [120531]; Swedish Royal Academy of Sciences

    Available from: 2016-12-06 Created: 2016-11-30 Last updated: 2024-01-17
    3. Neural Lineage Progression Controlled by a Temporal Proliferation Program.
    Open this publication in new window or tab >>Neural Lineage Progression Controlled by a Temporal Proliferation Program.
    Show others...
    2017 (English)In: Developmental Cell, ISSN 1534-5807, E-ISSN 1878-1551, Vol. 43, no 3, p. 332-348Article in journal (Refereed) Published
    Abstract [en]

    Great progress has been made in identifying transcriptional programs that establish stem cell identity. In contrast, we have limited insight into how these programs are down-graded in a timely manner to halt proliferation and allow for cellular differentiation. Drosophila embryonic neuroblasts undergo such a temporal progression, initially dividing to bud off daughters that divide once (type I), then switching to generating non-dividing daughters (type 0), and finally exiting the cell cycle. We identify six early transcription factors that drive neuroblast and type I daughter proliferation. Early factors are gradually replaced by three late factors, acting to trigger the type I→0 daughter proliferation switch and eventually to stop neuroblasts. Early and late factors regulate each other and four key cell-cycle genes, providing a logical genetic pathway for these transitions. The identification of this extensive driver-stopper temporal program controlling neuroblast lineage progression may have implications for studies in many other systems.less thanbr /greater than (Copyright © 2017 Elsevier Inc. All rights reserved.)

    Place, publisher, year, edition, pages
    Cell Press, 2017
    National Category
    Developmental Biology
    Identifiers
    urn:nbn:se:liu:diva-143117 (URN)10.1016/j.devcel.2017.10.004 (DOI)000414584300011 ()29112852 (PubMedID)
    Note

    Funding agencies: Swedish Research Council [621-2013-5258]; Knut and Alice Wallenberg Foundation [KAW2011.0165, KAW2012.0101]; Swedish Cancer Foundation [140780, 150633]

    Available from: 2017-11-20 Created: 2017-11-20 Last updated: 2017-11-20Bibliographically approved
    Download full text (pdf)
    fulltext
    Download (jpg)
    presentationsbild
    Download (pdf)
    omslag
  • 32.
    Balion, Zbigniev
    et al.
    Lithuanian Univ Hlth Sci, Lithuania.
    Sipailaite, Emilija
    Lithuanian Univ Hlth Sci, Lithuania.
    Stasyte, Gabija
    Lithuanian Univ Hlth Sci, Lithuania.
    Vailionyte, Agne
    Ferentis UAB, Lithuania; Ctr Phys Sci & Technol, Lithuania.
    Mazetyte-Godiene, Airina
    Ferentis UAB, Lithuania; Ctr Phys Sci & Technol, Lithuania.
    Seskeviciute, Ieva
    Lithuanian Univ Hlth Sci, Lithuania.
    Bernotiene, Rasa
    Lithuanian Univ Hlth Sci, Lithuania.
    Phopase, Jaywant
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jekabsone, Aiste
    Lithuanian Univ Hlth Sci, Lithuania.
    Investigation of Cancer Cell Migration and Proliferation on Synthetic Extracellular Matrix Peptide Hydrogels2020In: Frontiers in Bioengineering and Biotechnology, E-ISSN 2296-4185, Vol. 8, article id 773Article in journal (Refereed)
    Abstract [en]

    Chemical and mechanical properties of a tumor microenvironment are essential players in cancer progression, and it is important to precisely control the extracellular conditions while designing cancerin vitromodels. The study investigates synthetic hydrogel matrices from multi-arm polyethylene glycol (PEG) functionalized with collagen-like peptide (CLP) CG(PKG)(4)(POG)(4)(DOG)(4)alone and conjugated with either cell adhesion peptide RGD (mimicking fibronectin) or IKVAV (mimicking laminin). Human glioblastoma HROG36, rat C6 glioma cells, and A375 human melanoma cells were grown on the hydrogels and monitored for migration, proliferation, projected cell area, cell shape index, size and number, distribution of focal contacts in individual cells, and focal adhesion number. PEG-CLP-RGD induced migration of both glioma cell lines and also stimulated proliferation (assessed as metabolic activity) of HROG36 cells. Migration of C6 cells were also stimulated by PEG-CLP-IKVAV. These responses strongly correlated with the changes in adhesion and morphology parameters of individual cells - projected cell area, cell shape index, and focal contact number. Melanoma A375 cell proliferation was increased by PEG-CLP-RGD, and this was accompanied by a decrease in cell shape index. However, neither RGD nor IKVAV conjugated to PEG-CLP stimulated migratory capacity of A375 cells. Taken together, the study presents synthetic scaffolds with extracellular matrix (ECM)-mimicking peptides that allow for the exploration of the effect of ECM signaling to cancer cells.

    Download full text (pdf)
    fulltext
  • 33.
    Ballantyne, Kaye N.
    et al.
    Erasmus MC University, Netherlands Victoria Police Forens Serv Department, Australia .
    Ralf, Arwin
    Erasmus MC University, Netherlands .
    Aboukhalid, Rachid
    Mohammed V Agdal University, Morocco .
    Achakzai, Niaz M.
    University of Punjab, Pakistan .
    Anjos, Maria J.
    National Institute Legal Medical and Forens Science IP, Portugal .
    Ayub, Qasim
    Wellcome Trust Sanger Institute, England .
    Balazic, Joze
    University of Ljubljana, Slovenia .
    Ballantyne, Jack
    University of Central Florida, FL 32816 USA University of Central Florida, FL 32816 USA .
    J. Ballard, David
    Kings Coll London, England .
    Berger, Burkhard
    Medical University of Innsbruck, Austria .
    Bobillo, Cecilia
    University of Buenos Aires, Argentina Consejo Nacl Invest Cient and Tecn, Argentina .
    Bouabdellah, Mehdi
    Mohammed V Agdal University, Morocco .
    Burri, Helen
    University of Zurich, Switzerland .
    Capal, Tomas
    Institute Criminalist Prague, Czech Republic .
    Caratti, Stefano
    University of Turin, Italy .
    Cardenas, Jorge
    University of Santiago de Compostela, Spain .
    Cartault, Francois
    Site Centre Hospital Felix Guyon, Reunion .
    F. Carvalho, Elizeu
    University of Estado Rio De Janeiro, Brazil .
    Carvalho, Monica
    National Institute Legal Medical and Forens Science IP, Portugal .
    Cheng, Baowen
    Yunnan Prov Department Public Secur, Peoples R China .
    D. Coble, Michael
    NIST, MD 20899 USA .
    Comas, David
    University of Pompeu Fabra, Spain .
    Corach, Daniel
    University of Buenos Aires, Argentina Consejo Nacl Invest Cient and Tecn, Argentina .
    E. DAmato, Maria
    University of Western Cape, South Africa .
    Davison, Sean
    University of Western Cape, South Africa .
    de Knijff, Peter
    Leiden University, Netherlands .
    Corazon A. De Ungria, Maria
    University of Philippines, Philippines .
    Decorte, Ronny
    Katholieke University of Leuven, Belgium .
    Dobosz, Tadeusz
    Wroclaw Medical University, Poland .
    M. Dupuy, Berit
    Norwegian Institute Public Heatlh, Norway .
    Elmrghni, Samir
    University of Benghazi, Libya .
    Gliwinski, Mateusz
    Medical University of Gdansk, Poland .
    C. Gomes, Sara
    University of Madeira, Portugal .
    Grol, Laurens
    Netherlands Forens Institute, Netherlands .
    Haas, Cordula
    University of Zurich, Switzerland .
    Hanson, Erin
    University of Central Florida, FL 32816 USA .
    Henke, Juergen
    Institute Blutgruppenforsch LGC GmbH, Germany .
    Henke, Lotte
    Institute Blutgruppenforsch LGC GmbH, Germany .
    Herrera-Rodriguez, Fabiola
    Poder Judicial, Costa Rica .
    R. Hill, Carolyn
    NIST, MD 20899 USA .
    Holmlund, Gunilla
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences.
    Honda, Katsuya
    University of Tsukuba, Japan .
    Immel, Uta-Dorothee
    University of Halle Wittenberg, Germany .
    Inokuchi, Shota
    National Research Institute Police Science, Japan .
    A. Jobling, Mark
    University of Leicester, England .
    Kaddura, Mahmoud
    University of Benghazi, Libya .
    S. Kim, Jong
    Supreme Prosecutors Off, South Korea .
    H. Kim, Soon
    National Forens Serv, South Korea .
    Kim, Wook
    Dankook University, South Korea .
    E. King, Turi
    University of Leicester, England .
    Klausriegler, Eva
    Salzburg University, Austria .
    Kling, Daniel
    Norwegian Institute Public Heatlh, Norway .
    Kovacevic, Lejla
    Institute Genet Engn and Biotechnol, Bosnia and Herceg .
    Kovatsi, Leda
    Aristotle University of Thessaloniki, Greece .
    Krajewski, Pawel
    Medical University of Warsaw, Poland .
    Kravchenko, Sergey
    NASU, Ukraine .
    H. D. Larmuseau, Maarten
    Katholieke University of Leuven, Belgium .
    Young Lee, Eun
    Yonsei University, South Korea .
    Lessig, Ruediger
    University of Halle Wittenberg, Germany .
    A. Livshits, Ludmila
    NASU, Ukraine .
    Marjanovic, Damir
    Institute Genet Engn and Biotechnol, Bosnia and Herceg .
    Minarik, Marek
    Genomac Forens Institute, Czech Republic .
    Mizuno, Natsuko
    National Research Institute Police Science, Japan .
    Moreira, Helena
    University of Aveiro, Portugal .
    Morling, Niels
    University of Copenhagen, Denmark .
    Mukherjee, Meeta
    Govt India, India .
    Munier, Patrick
    Site Centre Hospital Felix Guyon, Reunion .
    Nagaraju, Javaregowda
    Centre DNA Fingerprinting and Diagnost, India .
    Neuhuber, Franz
    Salzburg University, Austria .
    Nie, Shengjie
    Kunming Medical University, Peoples R China .
    Nilasitsataporn, Premlaphat
    Royal Thai Police, Thailand .
    Nishi, Takeki
    University of Tsukuba, Japan .
    H. Oh, Hye
    Supreme Prosecutors Off, South Korea .
    Olofsson, Jill
    University of Copenhagen, Denmark .
    Onofri, Valerio
    University of Politecn Marche, Italy .
    U. Palo, Jukka
    University of Helsinki, Finland .
    Pamjav, Horolma
    Minist Public Adm and Justice, Hungary .
    Parson, Walther
    Medical University of Innsbruck, Austria Penn State University, PA 16802 USA .
    Petlach, Michal
    Genomac Forens Institute, Czech Republic .
    Phillips, Christopher
    University of Santiago de Compostela, Spain .
    Ploski, Rafal
    Medical University of Warsaw, Poland .
    P. R. Prasad, Samayamantri
    Centre DNA Fingerprinting and Diagnost, India .
    Primorac, Dragan
    Penn State University, PA 16802 USA University of New Haven, CT USA University of Split, Croatia University of Osijek, Croatia .
    A. Purnomo, Gludhug
    Eijkman Institute Molecular Biol, Indonesia .
    Purps, Josephine
    Charite, Germany .
    Rangel-Villalobos, Hector
    University of Guadalajara CUCienega UdeG, Mexico .
    Rebala, Krzysztof
    Medical University of Gdansk, Poland .
    Rerkamnuaychoke, Budsaba
    Mahidol University, Thailand .
    Rey Gonzalez, Danel
    University of Santiago de Compostela, Spain .
    Robino, Carlo
    University of Turin, Italy .
    Roewer, Lutz
    Charite, Germany .
    Rosa, Alexandra
    University of Madeira, Portugal University of Madeira, Portugal .
    Sajantila, Antti
    University of Helsinki, Finland University of N Texas, TX USA .
    Sala, Andrea
    University of Buenos Aires, Argentina Consejo Nacl Invest Cient and Tecn, Argentina .
    M. Salvador, Jazelyn
    University of Philippines, Philippines .
    Sanz, Paula
    University of Pompeu Fabra, Spain .
    Schmitt, Cornelia
    University of Cologne, Germany .
    K. Sharma, Anil
    Govt India, India .
    A. Silva, Dayse
    University of Estado Rio De Janeiro, Brazil .
    Shin, Kyoung-Jin
    Yonsei University, South Korea .
    Sijen, Titia
    Netherlands Forens Institute, Netherlands .
    Sirker, Miriam
    University of Cologne, Germany .
    Sivakova, Daniela
    Comenius University, Slovakia .
    Skaro, Vedrana
    Genos Ltd, Croatia .
    Solano-Matamoros, Carlos
    University of Costa Rica, Costa Rica .
    Souto, Luis
    University of Aveiro, Portugal .
    Stenzl, Vlastimil
    Institute Criminalist Prague, Czech Republic .
    Sudoyo, Herawati
    Eijkman Institute Molecular Biol, Indonesia .
    Syndercombe-Court, Denise
    Kings Coll London, England .
    Tagliabracci, Adriano
    University of Politecn Marche, Italy .
    Taylor, Duncan
    Forens Science South Australia, Australia Flinders University of S Australia, Australia .
    Tillmar, Andreas
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences. Natl Board Forens Med, Dept Forens Genet and Forens Toxicol, Linkoping, Sweden .
    S. Tsybovsky, Iosif
    State Comm Forens Expertises, Byelarus .
    Tyler-Smith, Chris
    Wellcome Trust Sanger Institute, England .
    J. van der Gaag, Kristiaan
    Leiden University, Netherlands .
    Vanek, Daniel
    Forens DNA Serv, Czech Republic Charles University of Prague, Czech Republic .
    Volgyi, Antonia
    Minist Public Adm and Justice, Hungary .
    Ward, Denise
    Forens Science South Australia, Australia .
    Willemse, Patricia
    Leiden University, Netherlands .
    P. H. Yap, Eric
    DSO National Labs, Singapore .
    Y. Y. Yong, Rita
    DSO National Labs, Singapore .
    Zupanic Pajnic, Irena
    University of Ljubljana, Slovenia .
    Kayser, Manfred
    Erasmus MC University, Netherlands .
    Toward Male Individualization with Rapidly Mutating Y-Chromosomal Short Tandem Repeats2014In: Human Mutation, ISSN 1059-7794, E-ISSN 1098-1004, Vol. 35, no 8, p. 1021-1032Article in journal (Refereed)
    Abstract [en]

    Relevant for various areas of human genetics, Y-chromosomal short tandem repeats (Y-STRs) are commonly used for testing close paternal relationships among individuals and populations, and for male lineage identification. However, even the widely used 17-loci Yfiler set cannot resolve individuals and populations completely. Here, 52 centers generated quality-controlled data of 13 rapidly mutating (RM) Y-STRs in 14,644 related and unrelated males from 111 worldwide populations. Strikingly, greater than99% of the 12,272 unrelated males were completely individualized. Haplotype diversity was extremely high (global: 0.9999985, regional: 0.99836-0.9999988). Haplotype sharing between populations was almost absent except for six (0.05%) of the 12,156 haplotypes. Haplotype sharing within populations was generally rare (0.8% nonunique haplotypes), significantly lower in urban (0.9%) than rural (2.1%) and highest in endogamous groups (14.3%). Analysis of molecular variance revealed 99.98% of variation within populations, 0.018% among populations within groups, and 0.002% among groups. Of the 2,372 newly and 156 previously typed male relative pairs, 29% were differentiated including 27% of the 2,378 father-son pairs. Relative to Yfiler, haplotype diversity was increased in 86% of the populations tested and overall male relative differentiation was raised by 23.5%. Our study demonstrates the value of RMY-STRs in identifying and separating unrelated and related males and provides a reference database.

    Download full text (pdf)
    fulltext
  • 34.
    Barker, A.
    et al.
    Cambridge Institute Public Heatlh, England .
    Lauria, A.
    University of Campus Biomed, Italy .
    Schloot, N.
    University of Dusseldorf, Germany University of Dusseldorf, Germany .
    Hosszufalusi, N.
    Semmelweis University, Hungary .
    Ludvigsson, Johnny
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center of Paediatrics and Gynaecology and Obstetrics, Department of Paediatrics in Linköping.
    Mathieu, C.
    Katholieke University of Leuven, Belgium .
    Mauricio, D.
    Hospital Arnau Vilanova, Spain .
    Nordwall, Maria
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center of Paediatrics and Gynaecology and Obstetrics, Department of Paediatrics in Norrköping.
    Van der Schueren, B.
    Katholieke University of Leuven, Belgium .
    Mandrup-Poulsen, T.
    University of Copenhagen, Denmark .
    Scherbaum, W .A.
    University of Dusseldorf, Germany .
    Weets, I.
    Vrije University of Brussel, Belgium Vrije University of Brussel, Belgium Belgian Diabet Registry BDR, Belgium .
    Gorus, F. K.
    Vrije University of Brussel, Belgium Vrije University of Brussel, Belgium Belgian Diabet Registry BDR, Belgium .
    Wareham, N.
    Cambridge Institute Public Heatlh, England .
    Leslie, R. D.
    Queen Mary University of London, England .
    Pozzilli, P.
    University of Campus Biomed, Italy Queen Mary University of London, England .
    Age-dependent decline of beta-cell function in type 1 diabetes after diagnosis: a multi-centre longitudinal study2014In: Diabetes, obesity and metabolism, ISSN 1462-8902, E-ISSN 1463-1326, Vol. 16, no 3, p. 262-267Article in journal (Refereed)
    Abstract [en]

    AimsC-peptide secretion is currently the only available clinical biomarker to measure residual -cell function in type 1 diabetes. However, the natural history of C-peptide decline after diagnosis can vary considerably dependent upon several variables. We investigated the shape of C-peptide decline over time from type 1 diabetes onset in relation to age at diagnosis, haemoglobin A1c (HbA1c) levels and insulin dose. MethodsWe analysed data from 3929 type 1 diabetes patients recruited from seven European centres representing all age groups at disease onset (childhood, adolescence and adulthood). The influence of the age at onset on -cell function was investigated in a longitudinal analysis at diagnosis and up to 5-years follow-up. ResultsFasting C-peptide (FCP) data at diagnosis were available in 3668 patients stratified according to age at diagnosis in four groups (less than5years, n=344; greater than5yearsless than10years, n=668; greater than10yearsless than18years, n=991; greater than18years, n=1655). FCP levels were positively correlated with age (pless than0.001); the subsequent decline in FCP over time was log-linear with a greater decline rate in younger age groups (pless than0.0001). ConclusionsThis study reveals a positive correlation between age at diagnosis of type 1 diabetes and FCP with a more rapid decline of -cell function in the very young patients. These data can inform the design of clinical trials using C-peptide values as an end-point for the effect of a given treatment.

  • 35.
    Barranco, Isabel
    et al.
    University of Murcia, Murcia, Spain.
    Perez-Patiño, Cristina
    University of Murcia, Murcia, Spain.
    Tvarijonaviciute, Asta
    University of Murcia, Murcia, Spain.
    Parrilla, Inmaculada
    University of Murcia, Murcia, Spain.
    Vicente-Carrillo, Alejandro
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Alvarez-Rodriguez, Manuel
    Linköping University, Department of Clinical and Experimental Medicine, Division of Children's and Women's health. Linköping University, Faculty of Medicine and Health Sciences.
    Ceron, Jose J
    University of Murcia, Murcia, Spain.
    Martinez, Emilio A
    University of Murcia, Murcia, Spain.
    Rodriguez-Martinez, Heriberto
    Linköping University, Department of Clinical and Experimental Medicine, Division of Children's and Women's health. Linköping University, Faculty of Medicine and Health Sciences.
    Roca, Jordi
    University of Murcia, Murcia, Spain.
    Active paraoxonase 1 is synthesised throughout the internal boar genital organs.2017In: Reproduction (Cambridge, England), ISSN 1741-7899, Vol. 154, no 3, p. 237-243Article in journal (Refereed)
    Abstract [en]

    The paraoxonase type 1 (PON1) is an enzyme with antioxidant properties recently identified in the seminal plasma (SP) of several species, including the porcine. The aims of the present study were to (1) describe the immunohistochemical localisation of PON1 in the genital organs of fertile boars and (2) evaluate the relationship among PON1 activity and high-density lipoprotein cholesterol (HDL-C) concentration in fluids of the boar genital organs. Immunohistochemical analysis demonstrated that PON1 was present in testis (specifically in Leydig cells, blood vessels, spermatogonia and elongated spermatids), epididymis (specifically in the cytoplasm of the principal epithelial cells, luminal secretion and in the surrounding smooth muscle) and the lining epithelia of the accessory sexual glands (cytoplasmic location in the prostate and membranous in the seminal vesicle and bulbourethral glands). The Western blotting analysis confirmed the presence of PON1 in all boar genital organs, showing in all of them a band of 51 kDa and an extra band of 45 kDa only in seminal vesicles. PON1 showed higher activity levels in epididymal fluid than those in SP of the entire ejaculate or of specific ejaculate portions. A highly positive relationship between PON1 activity and HDL-C concentration was found in all genital fluids. In sum, all boar genital organs contributing to sperm-accompanying fluid/s were able to express PON1, whose activity in these genital fluids is highly dependent on the variable HDL-C concentration present.

    Download full text (pdf)
    fulltext
  • 36.
    Baumeister, Ulf
    et al.
    Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany.
    Funke, Ruth
    Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany.
    Ebnet, Klaus
    Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany.
    Vorschmitt, Henrik
    Max‐Planck‐Institute of Molecular Biomedicine, Münster, Germany.
    Koch, Stefan
    Max‐Planck‐Institute of Molecular Biomedicine, Münster, Germany.
    Vestweber, Dietmar
    Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany; Max‐Planck‐Institute of Molecular Biomedicine, Münster, Germany.
    Association of Csk to VE-cadherin and inhibition of cell proliferation2005In: EMBO Journal, ISSN 0261-4189, E-ISSN 1460-2075, Vol. 24, no 9, p. 1686-1695Article in journal (Refereed)
    Abstract [en]

    Vascular endothelial cadherin (VE-cadherin) mediates contact inhibition of cell growth in quiescent endothelial cell layers. Searching for proteins that could be involved in VE-cadherin signaling, we found the cytosolic C-terminal Src kinase (Csk), a negative regulator of Src family kinases. We show that Csk binds via its SH2 domain to the phosphorylated tyrosine 685 of VE-cadherin. VE-cadherin recruits Csk to cell contacts and both proteins can be co-precipitated from cell lysates of transfected cells and endothelial cells. Association of VE-cadherin and Csk in endothelial cells increased with increasing cell density. CHO cells expressing the tyrosine replacement mutant VE-cadherin-Y685F grow to higher cell densities than cells expressing wild-type VE-cadherin. Overexpression of Csk in these cells under an inducible promoter inhibits cell proliferation in the presence and absence of VE-cadherin, but not in the presence of VE-cadherin-Y685F. Reduction of Csk expression by RNA interference enhances endothelial cell proliferation. Our results suggest that the phosphorylated tyrosine residue 685 of VE-cadherin and probably the binding of Csk to this site are involved in inhibition of cell growth triggered by cell density.

  • 37.
    Baumgartner, Johanna
    et al.
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems.
    Jönsson, Jan-Ingvar
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Division of Hematopoiesis and Developmental Biology.
    Jager, Edwin W. H.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Switchable presentation of cytokines on electroactive polypyrrole surfaces for hematopoietic stem and progenitor cells2018In: Journal of Materials Chemistry B, ISSN 2050-750X, Vol. 6, no 28, p. 4665-4675Article in journal (Refereed)
    Abstract [en]

    Hematopoietic stem cells are used in transplantations for patients with hematologic malignancies. Scarce sources require efficient strategies of expansion, including polymeric biomaterials mimicking architectures of bone marrow tissue. Tissue microenvironment and mode of cytokine presentation strongly influence cell fate. Although several cytokines with different functions as soluble or membrane-bound mediators have already been identified, their precise roles have not yet been clarified. A need exists for in vitro systems that mimic the in vivo situation to enable such studies. One way is to establish surfaces mimicking physiological presentation using protein-immobilization onto polymer films. However these films merely provide a static presentation of the immobilized proteins. It would be advantageous to also dynamically change protein presentation and functionality to better reflect the in vivo conditions. The electroactive polymer polypyrrole shows excellent biocompatibility and electrochemically alters its surface properties, becoming an interesting choice for such setups. Here, we present an in vitro system for switchable presentation of membrane-bound cytokines. We use interleukin IL-3, known to affect hematopoiesis, and show that when immobilized on polypyrrole films, IL-3 is bioavailable for the bone marrow-derived FDC-P1 progenitor cell line. Moreover, IL-3 presentation can be successfully altered by changing the redox state of the film, in turn influencing FDC-P1 cell viability. This novel in vitro system provides a valuable tool for stimuli-responsive switchable protein presentation allowing the dissection of relevant mediators in stem and progenitor cell behavior.

    Download full text (pdf)
    Switchable presentation of cytokines on electroactive polypyrrole surfaces for hematopoietic stem and progenitor cells
  • 38.
    Baxtera, Shannon A.
    et al.
    University of Manitoba, Winnipeg, Canada.
    Cheung, David Y.
    University of Manitoba, Winnipeg, Canada.
    Bocangel, Patricia
    University of Manitoba, Winnipeg, Canada.
    Kim, Hae K.
    University of Manitoba, Winnipeg, Canada.
    Herbert, Krista
    University of Manitoba, Winnipeg, Canada.
    Douville, Josette M.
    University of Manitoba, Winnipeg, Canada.
    Jangamreddy, Jaganmohan Reddy
    University of Manitoba, Winnipeg, Canada.
    Zhang, Shunzhen
    University of Manitoba, Winnipeg, Canada.
    Eisensta, David D.
    University of Manitoba, Winnipeg, Canada.
    Wigle, Jeffrey T.
    University of Manitoba, Winnipeg, Canada.
    Regulation of the lymphatic endothelial cell cycle by the PROX1 homeodomain protein2011In: Biochimica et Biophysica Acta. Molecular Cell Research, ISSN 0167-4889, E-ISSN 1879-2596, Vol. 1813, no 1, p. 201-212Article in journal (Refereed)
    Abstract [en]

    The homeobox transcription factor PROX1 is essential for the development and maintenance of lymphatic vasculature. How PROX1 regulates lymphatic endothelial cell fate remains undefined. PROX1 has been shown to upregulate the expression of Cyclin E, which mediates the G1 to S transition of the cell cycle. Here we demonstrate that PROX1 activates the mouse Cyclin E1 (Ccne1) promoter via two proximal E2F-binding sites. We have determined that the N-terminal region of PROX1 is sufficient to activate a 1-kb Ccne1 promoter, whereas the homeodomain is dispensable for activation. We have identified that the Prospero domain 1 (PD1) is required for the nuclear localization of PROX1. Our comparison of two DNA-binding-deficient constructs of PROX1 showed a cell-type-specific difference between these two proteins in both their localization and function. We demonstrated that siRNA-mediated knockdown of PROX1 in lymphatic endothelial cells decreases progression from G1 to S phase of the cell cycle. We conclude that PROX1 activates the Ccne1 promoter independent of DNA binding, and our results illustrate a novel role for PROX1 in the regulation of lymphatic endothelial cell proliferation.

  • 39.
    Bazzaro, Martina
    et al.
    Univ Minnesota, MN 55455 USA.
    Linder, Stig
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences. Karolinska Inst, Sweden.
    Dienone Compounds: Targets and Pharmacological Responses2020In: Journal of Medicinal Chemistry, ISSN 0022-2623, E-ISSN 1520-4804, Vol. 63, no 24, p. 15075-15093Article in journal (Refereed)
    Abstract [en]

    The biological responses to dienone compounds with a 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore have been studied extensively. Despite their expected general thiol reactivity, these compounds display considerable degrees of tumor cell selectivity. Here we review in vitro and preclinical studies of dienone compounds including b-AP15, VLX1570, RA-9, RA-190, EF24, HO-3867, and MCB-613. A common property of these compounds is their targeting of the ubiquitin-proteasome system (UPS), known to be essential for the viability of tumor cells. Gene expression profiling experiments have shown induction of responses characteristic of UPS inhibition, and experiments using cellular reporter proteins have shown that proteasome inhibition is associated with cell death. Other mechanisms of action such as reactivation of mutant p53, stimulation of steroid receptor coactivators, and induction of protein cross-linking have also been described. Although unsuitable as biological probes due to widespread reactivity, dienone compounds are cytotoxic to apoptosis-resistant tumor cells and show activity in animal tumor models.

    Download full text (pdf)
    fulltext
  • 40.
    Beazer, Jack D.
    et al.
    Institute of Cardiovascular and Medical Science, College of Medical Veterinary and Life Science, University of Glasgow, Wolfson Link Building, University Avenue, U.K.
    Patanapirunhakit, Patamat
    Institute of Cardiovascular and Medical Science, College of Medical Veterinary and Life Science, University of Glasgow, Wolfson Link Building, University Avenue, U.K.
    Gill, Jason M. R.
    Institute of Cardiovascular and Medical Science, College of Medical Veterinary and Life Science, University of Glasgow, Wolfson Link Building, University Avenue, U.K.
    Graham, Delyth
    Institute of Cardiovascular and Medical Science, College of Medical Veterinary and Life Science, University of Glasgow, Wolfson Link Building, University Avenue, U.K.
    Karlsson, Helen
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Prevention, Rehabilitation and Community Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Medicine Center, Occupational and Environmental Medicine Center.
    Ljunggren, Stefan
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Prevention, Rehabilitation and Community Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Medicine Center, Occupational and Environmental Medicine Center.
    Mulder, Monique T.
    Section of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands.
    Freeman, Dilys J.
    Institute of Cardiovascular and Medical Science, College of Medical Veterinary and Life Science, University of Glasgow, Wolfson Link Building, University Avenue, U.K.
    High-density lipoproteins vascular protective functions in metabolic and cardiovascular disease - could extracellular vesicles be at play?2020In: Clinical Science, ISSN 0143-5221, E-ISSN 1470-8736, Vol. 134, no 22, p. 2977-2986Article, review/survey (Refereed)
    Abstract [en]

    High-density lipoprotein (HDL) is a circulating complex of lipids and proteins known primarily for its role in reverse cholesterol transport and consequent protection from atheroma. In spite of this, therapies aimed at increasing HDL concentration do not reduce the risk of cardiovascular disease (CVD), and as such focus has shifted towards other HDL functions protective of vascular health - including vasodilatory, anti-inflammatory, antioxidant and anti-thrombotic actions. It has been demonstrated that in disease states such as CVD and conditions of insulin resistance such as Type 2 diabetes mellitus (T2DM), HDL function is impaired owing to changes in the abundance and function of HDL-associated lipids and proteins, resulting in reduced vascular protection. However, the gold standard density ultracentrifugation technique used in the isolation of HDL also co-isolates extracellular vesicles (EVs). EVs are ubiquitous cell-derived particles with lipid bilayers that carry a number of lipids, proteins and DNA/RNA/miRNAs involved in cell-to-cell communication. EVs transfer their bioactive load through interaction with cell surface receptors, membrane fusion and endocytic pathways, and have been implicated in both cardiovascular and metabolic diseases - both as protective and pathogenic mediators. Given that studies using density ultracentrifugation to isolate HDL also co-isolate EVs, biological effects attributed to HDL may be confounded by EVs. We hypothesise that some of HDLs vascular protective functions in cardiovascular and metabolic disease may be mediated by EVs. Elucidating the contribution of EVs to HDL functions will provide better understanding of vascular protection and function in conditions of insulin resistance and potentially provide novel therapeutic targets for such diseases.

  • 41.
    Behrens, Kira
    et al.
    Leibniz Institute Expt Virol, Germany; Walter and Eliza Hall Institute Medical Research, Australia.
    Maul, Katrin
    Leibniz Institute Expt Virol, Germany.
    Tekin, Nilguen
    Leibniz Institute Expt Virol, Germany; Leibniz Institute Expt Virol, Germany.
    Kriebitzsch, Neele
    Leibniz Institute Expt Virol, Germany.
    Indenbirken, Daniela
    Leibniz Institute Expt Virol, Germany.
    Prassolov, Vladimir
    Engelhardt Institute Molecular Biol, Russia.
    Mueller, Ursula
    Leibniz Institute Expt Virol, Germany.
    Serve, Hubert
    Goethe University of Frankfurt, Germany.
    Cammenga, Jörg
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Haematology.
    Stocking, Carol
    Leibniz Institute Expt Virol, Germany.
    RUNX1 cooperates with FLT3-ITD to induce leukemia2017In: Journal of Experimental Medicine, ISSN 0022-1007, E-ISSN 1540-9538, Vol. 214, no 3, p. 737-752Article in journal (Refereed)
    Abstract [en]

    Acute myeloid leukemia (AML) is induced by the cooperative action of deregulated genes that perturb self-renewal, proliferation, and differentiation. Internal tandem duplications (ITDs) in the FLT3 receptor tyrosine kinase are common mutations in AML, confer poor prognosis, and stimulate myeloproliferation. AML patient samples with FLT3-ITD express high levels of RUNX1, a transcription factor with known tumor-suppressor function. In this study, to understand this paradox, we investigated the impact of RUNX1 and FLT3-ITD coexpression. FLT3-ITD directly impacts on RUNX1 activity, whereby up-regulated and phosphorylated RUNX1 cooperates with FLT3-ITD to induce AML. Inactivating RUNX1 in tumors releases the differentiation block and down-regulates genes controlling ribosome biogenesis. We identified Hhex as a direct target of RUNX1 and FLT3-ITD stimulation and confirmed high HHEX expression in FLT3-ITD AMLs. HHEX could replace RUNX1 in cooperating with FLT3-ITD to induce AML. These results establish and elucidate the unanticipated oncogenic function of RUNX1 in AML. We predict that blocking RUNX1 activity will greatly enhance current therapeutic approaches using FLT3 inhibitors.

    Download full text (pdf)
    fulltext
  • 42. Order onlineBuy this publication >>
    Bensberg, Maike
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Children's and Women's Health. Linköping University, Faculty of Medicine and Health Sciences.
    DNA methylation in T cell leukaemia2024Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    T cell acute lymphoblastic leukaemia (T-ALL) is a predominantly paediatric cancer that stems from malignant transformation of developing T cells. While the disease has an overall survival rate of 80%, the intense chemotherapy treatment causes severe toxicity and long-term side effects. Furthermore, the survival rate for patients in relapse is less than 25%. Consequently, there is a need for improved therapy options to reduce treatment-related side effects and improve the survival rate of relapsed patients. Targeting aberrant DNA methylation with hypomethylating agents (HMAs) has been successful in the treatment of myelodysplastic syndromes and acute myeloid leukaemia but has not been routinely used in the treatment of T-ALL, despite DNA hypomethylation being observed in T-ALL patients. In this work, we employed a comprehensive set of molecular and sequencing-based techniques to explore the possibilities of HMAs as a treatment option for T-ALL.

    We made the discovery that the DNA demethylating enzyme ten-eleven translocation 2, TET2, is downregulated or completely silenced in primary T-ALL. Moreover, the TET2 promoter was highly methylated in a group of patients, suggesting that TET2 itself can be silenced through DNA methylation in T-ALL. By treatment with HMAs, TET2 was demethylated in T-ALL cell lines and was one of few genes that was activated upon loss of DNA methylation, indicating that TET2 expression is regulated by DNA methylation in T-ALL cell lines. The development of a novel HMA, the DNMT1-specific inhibitor GSK-3685032, offers a tool to reveal the mechanism of action of the traditional HMAs, 5- azacytidine and decitabine, and to study the effects of acute loss of DNA methylation on cancer cells. We found that 5-azacytidine and decitabine are cytotoxic to T-ALL cells primarily by creating DNA double strand breaks. In contrast, GSK did not prompt a DNA damage response and instead reduced global DNA methylation to as little as 18% with limited cytotoxicity only occurring after levels of DNA methylation had dropped below 30%, a level of demethylation not achieved with DEC or AZA.

    T-ALL is more than two times more common in boys than girls and mutations in X-linked tumour suppressor genes that escape X inactivation, have been suggested as an underlying cause for the observed sex-bias. In theory, these aberrations would be more detrimental in XYmale cells than in XX-female cells due to the presence of an extra protective copy of the gene in females. We profiled DNA methylation during T cell development and created a map of sex-specific gene expression and expression from the inactive X chromosome, finding that some, but not all, suggested tumour suppressor genes in fact escape X inactivation. These results highlight the importance of profiling the healthy cells that T-ALL arises from to correctly judge the functional impact of gene dysregulation in cancer.

    In the last study, we aimed to investigate the role of N6-adenine methylation (6mdA) during T cell differentiation. While 6mdA is common in bacteria it is much rarer in humans. Nevertheless, 6mdA has previously been associated with several cellular processes, including cancer progression. Our study calls the presence of 6mdA in mammals into question by exposing limitations of the techniques used in its analysis. We show that contamination with bacterial DNA or 6mAcontaining RNA, nonspecific antibody binding, and low precision of third-generation sequencing techniques all hinder the detection and investigation of rare DNA modifications, such as 6mdA.

    Together, this work is an in-depth study of the function and the potential of DNA methylation in the biology of healthy and malignant T cells.

    List of papers
    1. TET2 as a tumor suppressor and therapeutic target in T-cell acute lymphoblastic leukemia
    Open this publication in new window or tab >>TET2 as a tumor suppressor and therapeutic target in T-cell acute lymphoblastic leukemia
    Show others...
    2021 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 118, no 34, article id e2110758118Article in journal (Refereed) Published
    Abstract [en]

    Pediatric T-cell acute lymphoblastic leukemia (T-ALL) is an aggres-sive malignancy resulting from overproduction of immature T-cells in the thymus and is typified by widespread alterations in DNA methyl-ation. As survival rates for relapsed T-ALL remain dismal (10 to 25%), development of targeted therapies to prevent relapse is key to improv-ing prognosis. Whereas mutations in the DNA demethylating enzyme TET2 are frequent in adult T-cell malignancies, TET2 mutations in T-ALL are rare. Here, we analyzed RNA-sequencing data of 321 primary T-ALLs, 20 T-ALL cell lines, and 25 normal human tissues, revealing that TET2 is transcriptionally repressed or silenced in 71% and 17% of T-ALL, respec-tively. Furthermore, we show that TET2 silencing is often associated with hypermethylation of the TET2 promoter in primary T-ALL. Impor-tantly, treatment with the DNA demethylating agent, 5-azacytidine (5-aza), was significantly more toxic to TET2-silenced T-ALL cells and resulted in stable re-expression of the TET2 gene. Additionally, 5-aza led to up-regulation of methylated genes and human endogenous ret-roviruses (HERVs), which was further enhanced by the addition of phys-iological levels of vitamin C, a potent enhancer of TET activity. Together, our results clearly identify 5-aza as a potential targeted therapy for TET2-silenced T-ALL.

    Place, publisher, year, edition, pages
    National Academy of Sciences, 2021
    Keywords
    TET2; T-ALL; &nbsp; 5-azacytidine; &nbsp; HERV; &nbsp; vitamin C
    National Category
    Cell and Molecular Biology
    Identifiers
    urn:nbn:se:liu:diva-178940 (URN)10.1073/pnas.2110758118 (DOI)000689727900026 ()34413196 (PubMedID)
    Available from: 2021-09-06 Created: 2021-09-06 Last updated: 2024-03-19
    2. No evidence for DNA N-6-methyladenine in mammals
    Open this publication in new window or tab >>No evidence for DNA N-6-methyladenine in mammals
    Show others...
    2020 (English)In: Science Advances, E-ISSN 2375-2548, Vol. 6, no 12, article id eaay3335Article in journal (Refereed) Published
    Abstract [en]

    N-6-methyladenine (6mdA) is a widespread DNA modification in bacteria. More recently, 6mdA has also been characterized in mammalian DNA. However, measurements of 6mdA abundance and profiles are often very dissimilar between studies, even when performed on DNA from identical mammalian cell types. Using comprehensive bioinformatics analyses of published data and novel experimental approaches, we reveal that efforts to assay 6mdA in mammals have been severely compromised by bacterial contamination, RNA contamination, technological limitations, and antibody nonspecificity. These complications render 6mdA an exceptionally problematic DNA modification to study and have resulted in erroneous detection of 6mdA in several mammalian systems. Together, our results strongly imply that the evidence published to date is not sufficient to support the presence of 6mdA in mammals.

    Place, publisher, year, edition, pages
    Washington, DC, United States: American Association for the Advancement of Science (A A A S), 2020
    National Category
    Cell and Molecular Biology
    Identifiers
    urn:nbn:se:liu:diva-165191 (URN)10.1126/sciadv.aay3335 (DOI)000521937000012 ()32206710 (PubMedID)2-s2.0-85082175144 (Scopus ID)
    Note

    Funding Agencies|Swedish Research CouncilSwedish Research Council [2015-03495]; LiU-Cancer Network [2016-007]; Swedish Cancer SocietySwedish Cancer Society [CAN 2017/625]

    Available from: 2020-04-17 Created: 2020-04-17 Last updated: 2024-03-19Bibliographically approved
    Download full text (pdf)
    fulltext
    Download (png)
    presentationsbild
  • 43.
    Bensberg, Maike
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Children's and Women's Health. Linköping University, Faculty of Medicine and Health Sciences.
    Rundquist, Olof
    Linköping University, Department of Physics, Chemistry and Biology, Bioinformatics. Linköping University, Faculty of Science & Engineering.
    Selimovic, Aida
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Children's and Women's Health. Linköping University, Faculty of Medicine and Health Sciences.
    Lagerwall, Cathrine
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center of Paediatrics and Gynaecology and Obstetrics, H.K.H. Kronprinsessan Victorias barn- och ungdomssjukhus.
    Benson, Mikael
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Children's and Women's Health. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center of Paediatrics and Gynaecology and Obstetrics, H.K.H. Kronprinsessan Victorias barn- och ungdomssjukhus.
    Gustafsson, Mika
    Linköping University, Department of Physics, Chemistry and Biology, Bioinformatics. Linköping University, Faculty of Science & Engineering.
    Vogt, Hartmut
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Children's and Women's Health. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center of Paediatrics and Gynaecology and Obstetrics, H.K.H. Kronprinsessan Victorias barn- och ungdomssjukhus.
    Lentini, Antonio
    Karolinska Inst, Sweden.
    Nestor, Colm
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Children's and Women's Health. Linköping University, Faculty of Medicine and Health Sciences.
    TET2 as a tumor suppressor and therapeutic target in T-cell acute lymphoblastic leukemia2021In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 118, no 34, article id e2110758118Article in journal (Refereed)
    Abstract [en]

    Pediatric T-cell acute lymphoblastic leukemia (T-ALL) is an aggres-sive malignancy resulting from overproduction of immature T-cells in the thymus and is typified by widespread alterations in DNA methyl-ation. As survival rates for relapsed T-ALL remain dismal (10 to 25%), development of targeted therapies to prevent relapse is key to improv-ing prognosis. Whereas mutations in the DNA demethylating enzyme TET2 are frequent in adult T-cell malignancies, TET2 mutations in T-ALL are rare. Here, we analyzed RNA-sequencing data of 321 primary T-ALLs, 20 T-ALL cell lines, and 25 normal human tissues, revealing that TET2 is transcriptionally repressed or silenced in 71% and 17% of T-ALL, respec-tively. Furthermore, we show that TET2 silencing is often associated with hypermethylation of the TET2 promoter in primary T-ALL. Impor-tantly, treatment with the DNA demethylating agent, 5-azacytidine (5-aza), was significantly more toxic to TET2-silenced T-ALL cells and resulted in stable re-expression of the TET2 gene. Additionally, 5-aza led to up-regulation of methylated genes and human endogenous ret-roviruses (HERVs), which was further enhanced by the addition of phys-iological levels of vitamin C, a potent enhancer of TET activity. Together, our results clearly identify 5-aza as a potential targeted therapy for TET2-silenced T-ALL.

    Download full text (pdf)
    fulltext
  • 44.
    Berger, Birgit S.
    et al.
    Division of Molecular Embryology, DKFZ‐ZMBH Alliance, Heidelberg, Germany.
    Acebron, Sergio P.
    Division of Molecular Embryology, DKFZ‐ZMBH Alliance, Heidelberg, Germany.
    Herbst, Jessica
    Division of Molecular Embryology, DKFZ‐ZMBH Alliance, Heidelberg, Germany.
    Koch, Stefan
    Division of Molecular Embryology, DKFZ‐ZMBH Alliance, Heidelberg, Germany.
    Niehrs, Christof
    Division of Molecular Embryology, DKFZ‐ZMBH Alliance, Heidelberg, Germany; Institute of Molecular Biology, Mainz, Germany.
    Parkinson's disease-associated receptor GPR37 is an ER chaperone for LRP62017In: EMBO Reports, ISSN 1469-221X, E-ISSN 1469-3178, Vol. 18, no 5, p. 712-725Article in journal (Refereed)
    Abstract [en]

    Wnt/beta-catenin signaling plays a key role in embryonic development, stem cell biology, and neurogenesis. However, the mechanisms of Wnt signal transmission, notably how the receptors are regulated, remain incompletely understood. Here we describe that the Parkinson's disease-associated receptor GPR37 functions in the maturation of the N-terminal bulky beta-propellers of the Wnt co-receptor LRP6. GPR37 is required for Wnt/beta-catenin signaling and protects LRP6 from ER-associated degradation via CHIP (carboxyl terminus of Hsc70-interacting protein) and the ATPase VCP GPR37 is highly expressed in neural progenitor cells (NPCs) where it is required for Wnt-dependent neurogenesis. We conclude that GPR37 is crucial for cellular protein quality control during Wnt signaling.

  • 45. Order onlineBuy this publication >>
    Bergh, Ann-Charlotte
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Arts and Sciences.
    Importance of microenvironment and antigen in the regulation of growth and survival of CLL cells2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Chronic lymphocytic leukemia (CLL) cells rapidly die when put in culture implying that microenvironmental signals delivered by accessory cells confer CLL cells with a growth advantage. Recent findings show that CLL cells are antigen experienced and antigen binding play a critical role in the pathogenesis of the disease. The overall aim of this thesis was to study the influence of the microenvironment and antigen binding in CLL.

    In paper I, we studied the influence of the small redox-regulatory molecule thioredoxin (Trx) on CLL cell survival and proliferation. We found Trx to be highly expressed in CLL lymph nodes (LNs), secreted from stromal cells surrounding proliferating CLL cells in proliferation centers, indicating growth promoting properties. Secreted Trx was also shown to protect CLL cells from apoptosis.

    In paper II, oxidized LDL was added to subset #1 CLL cells. However, in contrast to our hypothesis, we could not observe activation and proliferation of CLL cells. Instead subset #1 CLL cells were unresponsive/anergic through the B cell receptor (BcR). This anergic state could however be overcome by “wash out” of bound antigen or addition of toll-like receptor 9 stimulation in some patients.

    Gene expression profiles differ between groups of CLL patients and in peripheral blood (PB) and LN compartment, due to different microenvironments. However, it is not known whether these differences also apply for DNA methylation. In paper III, we identified various genes that were alternatively methylated between IGHV mutated (M) and unmutated (UM) groups. For example prognostic genes, CLLU1 and LPL, genes involved in B cell signaling, IBTK, as well as numerous TGF-β and NF-κB/TNF pathway genes.

    The intensity and duration of BcR signals are fine-tuned by enhancing or inhibitory coreceptors. SHP-1 inhibits BcR-signals by dephosphorylation. In paper IV, we compared the expression and activity of SHP-1 in CLL cells from LN with matched PB samples. However, in contrast to our hypothesis, SHP-1 activity/phosphorylation status in PB and LN, did not differ significantly.

    This thesis, add another piece to the puzzle, on how the microenvironment and antigens influence CLL pathogenesis. Since great variations among individuals are seen, further studies in different groups of patients are necessary to elucidate the importance of antigen for the development of CLL.

    List of papers
    1. Thioredoxin, produced by stromal cells retrieved from the lymph node microenvironment, rescues chronic lymphocytic leukemia cells from apoptosis in vitro
    Open this publication in new window or tab >>Thioredoxin, produced by stromal cells retrieved from the lymph node microenvironment, rescues chronic lymphocytic leukemia cells from apoptosis in vitro
    Show others...
    2007 (English)In: Haematologica, ISSN 0390-6078, E-ISSN 1592-8721, Vol. 92, no 11, p. 1495-1504Article in journal (Refereed) Published
    Abstract [en]

    Background and Objectives: The redox-regulatory protein thioredoxin has several functions including transcriptional regulation, and antioxidant, cytokine, and chemokine activities. We have previously shown that extracellular thioredoxin protects B-cell chronic lymphocytic leukemia (CLL) cells from apoptosis in vitro. In this study we were interested to determine whether thioredoxin is produced by cells surrounding the CLL cells in the in vivo microenvironment and whether this cell-derived thioredoxin has any leukemia growth-promoting effect in vitro. Design and Methods: Lymph nodes from CLL patients (n=25) were analyzed for thioredoxin expression by immunohistology. Stromal cells purified from the lymph nodes were analyzed for thioredoxin secretion at the single cell level using an ELIspot assay. The survival effect of the stromal-derived thioredoxin was tested by co-culturing stromal- and CLL cells with and without Fab-fragments of an anti-thioredoxin antibody. Results: The results indicated that the thioredoxin production correlated with the amount of proliferating cells and was mainly localized to the proliferation centers (pseudofollicles) in the CLL lymph nodes. The leukemia cells per se showed minimal thioredoxin levels, in contrast, stromal cells strongly expressed thioredoxin. Purified primary stromal cells, which secreted extracellular thioredoxin, significantly protected the CLL cells from undergoing apoptosis in 72 h co-cultures. Interestingly, this anti-apoptotic effect could be abrogated by addition of Fab-fragments of an anti- thioredoxin antibody. Interpretation and Conclusions: In conclusion, we have shown that stromal cells in the lymph node microenvironment produce thioredoxin and that the thioredoxin production is localized to the proliferation centers of the CLL lymph nodes. In addition, thioredoxin produced by purified stromal cells rescued CLL cells from apoptosis in vitro. ©2007 Ferrata Storti Foundation.

    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:liu:diva-40728 (URN)10.3324/haematol.11448 (DOI)54003 (Local ID)54003 (Archive number)54003 (OAI)
    Available from: 2009-10-10 Created: 2009-10-10 Last updated: 2017-12-13
    2. Silenced B-cell receptor response to autoantigen in a poor-prognostic subset of chronic lymphocytic leukemia
    Open this publication in new window or tab >>Silenced B-cell receptor response to autoantigen in a poor-prognostic subset of chronic lymphocytic leukemia
    Show others...
    2014 (English)In: Haematologica, ISSN 0390-6078, E-ISSN 1592-8721, Vol. 99, no 11, p. 1722-1730Article in journal (Refereed) Published
    Abstract [en]

    Chronic lymphocytic leukemia B-cells express auto/xeno-antigen-reactive antibodies that bind to self-epitopes and resemble natural IgM antibodies in their repertoire. One of the antigenic structures recognized is oxidation-induced malonedialdehyde present on low-density lipoprotein, apoptotic blebs, and on certain microbes. The poor-prognostic stereotyped subset #1 (Clan I IGHV genes-IGKV1(D)-39) express IgM B-cell receptors that bind oxidized low-density lipoprotein. In this study, we have used for the first time this authentic cognate antigen, since it is more faithful to B-cell physiology than anti-IgM, for analysis of downstream B-cell receptor-signal transduction events. Multivalent oxidized low-density lipoprotein showed specific binding to subset #1 IgM/IgD B-cell receptors, whereas native low-density lipoprotein did not. The antigen-binding induced prompt receptor-clustering, followed by internalization. However, the receptor-signal transduction was silenced, revealing no Ca2+ mobilization or cell-cycle entry, while phosphorylated extracellular-regulated kinase1/2 basal levels were high and could not be elevated further by oxidized low-density lipoprotein. Interestingly, B-cell receptor responsiveness was recovered after 48 hours culture in the absence of antigen in half of the cases. Toll-like receptor 9-ligand was found to breach the B-cell receptor-signaling incompetence in 5 of 12 cases pointing to intra-subset heterogeneity. Altogether, this study supports B-cell receptor-unresponsiveness to cognate self-antigen on its own in poor-prognostic subset #1 chronic lymphocytic leukemia indicating that these cells proliferate by other mechanisms that may override B-cell receptor-silencing brought about in a context of self-tolerance/anergy. These novel findings have implications for the understanding of chronic lymphocytic leukemia pathobiology and therapy.

    Place, publisher, year, edition, pages
    Ferrata Storti Foundation, 2014
    Keywords
    Anergy; B-cell Receptor Signaling; Chronic Lymphocytic Leukemia; Oxidized LDL; Stereotyped subsets
    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:liu:diva-109020 (URN)10.3324/haematol.2014.106054 (DOI)000347016300013 ()25085355 (PubMedID)
    Available from: 2014-07-28 Created: 2014-07-28 Last updated: 2017-12-05
    3. 450K-array analysis of chronic lymphocytic leukemia cells reveals global DNA methylation to be relatively stable over time and similar in resting and proliferative compartments
    Open this publication in new window or tab >>450K-array analysis of chronic lymphocytic leukemia cells reveals global DNA methylation to be relatively stable over time and similar in resting and proliferative compartments
    Show others...
    2013 (English)In: Leukemia, ISSN 0887-6924, E-ISSN 1476-5551, Vol. 27, no 1, p. 150-158Article in journal (Refereed) Published
    Abstract [en]

    In chronic lymphocytic leukemia (CLL), the microenvironment influences gene expression patterns; however, knowledge is limited regarding the extent to which methylation changes with time and exposure to specific microenvironments. Using high-resolution 450K-arrays, we provide the most comprehensive DNA methylation study of CLL to date, analysing paired diagnostic/follow-up samples from IGHV-mutated/untreated and IGHV-unmutated/treated patients (n=36) and patient-matched peripheral blood and lymph node samples (n=20). On an unprecedented scale, we revealed 2239 differentially methylated CpG sites between IGHV-mutated and unmutated patients, with the majority of sites positioned outside annotated CpG islands. Intriguingly, CLL prognostic genes (e.g. CLLU1, LPL, ZAP70, NOTCH1), epigenetic regulator (e.g. HDAC9, HDAC4, DNMT3B), B-cell signaling (e.g. IBTK) and numerous TGF-ß and NF-κB/TNF pathway genes were alternatively methylated between subgroups. Contrary, DNA methylation over time was deemed rather stable with few recurrent changes noted within subgroups. Although a larger number of non-recurrent changes were identified among IGHV-unmutated relative to mutated cases over time, these equated to a low global change. Similarly, few changes were identified between compartment cases. Altogether, we reveal CLL subgroups to display unique methylation profiles and unveil methylation as relatively stable over time and similar within different CLL compartments, implying aberrant methylation as an early leukemogenic event.Leukemia accepted article preview online, 27 August 2012; doi:10.1038/leu.2012.245.

    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:liu:diva-80705 (URN)10.1038/leu.2012.245 (DOI)000313511400021 ()22922567 (PubMedID)
    Available from: 2012-08-29 Created: 2012-08-29 Last updated: 2017-12-07
    4. B cell receptor signaling suppressor SHP-1 is active in CLL lymph node and peripheral blood
    Open this publication in new window or tab >>B cell receptor signaling suppressor SHP-1 is active in CLL lymph node and peripheral blood
    Show others...
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    Protein tyrosine phosphatase SHP-1 expression and activity is downregulated or lost in several leukemias and lymphomas due to DNA promotor hypermethylation, catalytic site mutation or oxidation, or phosphorylation at inhibitory sites, implying a negative role of SHP-1 in development of leukemias/lymphomas. In chronic lymphocytic leukemia (CLL), B cell receptor (BcR) and microenvironment signal levels are important in the pathogenesis. Considering that SHP-1 is a BcR signaling suppressor, we hypothesized that SHP-1 would be down-regulated and/or inactivated in the proliferative center lymph node (LN) cells. We analyzed PTPN6 (SHP-1) gene expression, SHP-1 protein expression and phosphorylation status in matched CD5+/CD19+ peripheral blood (PB) and LN cells from 6 CLL patients, and in comparison, BcR (anti-IgM) in vitro triggered CLL PB cells from 10 patients. Gene expression of PTPN6 was significantly higher in PB compared to LN CLL cells in 50% of the cases. SHP-1 protein expression level and phosphorylation at SHP-1Y536 and SHP-1S591 were, however, equal in PB and LN samples. SHP-1 phosphorylation at Y536 and S591, in PB CLL cells cultured ex vivo was significantly reduced upon BcR engagement in all patient samples. These results indicate that in vivo BcR signaling in CLL is paralyzed.

    Keywords
    B cell, chronic lymphocytic leukemia, SHP-1, suppressor, tyrosine phosphorylation
    National Category
    Cell and Molecular Biology Clinical Medicine
    Identifiers
    urn:nbn:se:liu:diva-124575 (URN)
    Available from: 2016-02-04 Created: 2016-02-04 Last updated: 2018-01-10Bibliographically approved
    Download full text (pdf)
    fulltext
    Download (pdf)
    omslag
    Download (jpg)
    presentationsbild
  • 46.
    Bergh, Ann-Charlotte
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    El-Schich, Zahra
    Department of Biomedical Science, Health and Society, Malmö University, Malmö, Sweden.
    Delfani, Payam
    Department of Immunotechnology, Lund Institute of Technology, Lund University, Lund, Sweden.
    Ohlsson, Lars
    Department of Biomedical Science, Health and Society, Malmö University, Malmö, Sweden.
    Rosén, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Gjörloff Wingren, Anette
    Department of Biomedical Science, Health and Society, Malmö University, Malmö, Sweden.
    B cell receptor signaling suppressor SHP-1 is active in CLL lymph node and peripheral bloodManuscript (preprint) (Other academic)
    Abstract [en]

    Protein tyrosine phosphatase SHP-1 expression and activity is downregulated or lost in several leukemias and lymphomas due to DNA promotor hypermethylation, catalytic site mutation or oxidation, or phosphorylation at inhibitory sites, implying a negative role of SHP-1 in development of leukemias/lymphomas. In chronic lymphocytic leukemia (CLL), B cell receptor (BcR) and microenvironment signal levels are important in the pathogenesis. Considering that SHP-1 is a BcR signaling suppressor, we hypothesized that SHP-1 would be down-regulated and/or inactivated in the proliferative center lymph node (LN) cells. We analyzed PTPN6 (SHP-1) gene expression, SHP-1 protein expression and phosphorylation status in matched CD5+/CD19+ peripheral blood (PB) and LN cells from 6 CLL patients, and in comparison, BcR (anti-IgM) in vitro triggered CLL PB cells from 10 patients. Gene expression of PTPN6 was significantly higher in PB compared to LN CLL cells in 50% of the cases. SHP-1 protein expression level and phosphorylation at SHP-1Y536 and SHP-1S591 were, however, equal in PB and LN samples. SHP-1 phosphorylation at Y536 and S591, in PB CLL cells cultured ex vivo was significantly reduced upon BcR engagement in all patient samples. These results indicate that in vivo BcR signaling in CLL is paralyzed.

  • 47.
    Bergström, Ida
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences.
    Lundberg, Anna
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences.
    Jönsson, Simon
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences.
    Ernerudh, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Inflammation Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Immunology and Transfusion Medicine.
    Särndahl, Eva
    Department of Clinical Medicine, School of Health and Medical Sciences, and iRiSC - Inflammatory 18 Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
    Jonasson, Lena
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Cardiology in Linköping.
    Annexin A1 expression in blood mononuclear cells: a potential marker of glucocorticoid activity in patients with coronary artery disease2014Manuscript (preprint) (Other academic)
    Abstract [en]

    An imbalance between pro- and anti-inflammatory actions is believed to drive progression of atherosclerosis. Annexin A1 (AnxA1) is a key player in resolution of inflammation and a mediator of anti-inflammatory effects of glucocorticoids. Here, we investigated whether expression of AnxA1 in peripheral blood mononuclear cells (PBMCs) was altered in patients with coronary artery disease (CAD) and also related findings to glucocorticoid sensitivity ex vivo.

    We included 57 patients 6-12 months after acute coronary syndrome (ACS), 10 patients with ACS, and healthy controls. AnxA1 mRNA was measured in PBMCs and AnxA1 protein was assessed in monocytes and lymphocyte subsets by flow cytometry. In post-ACS patients and controls, glucocorticoid sensitivity was determined by measuring inhibitory effects of dexamethasone on LPS46 induced cytokine secretion.

    AnxA1 mRNA levels in PBMCs were higher in patients compared with controls, although most pronounced in ACS patients. AnxA1 protein was most abundant in the monocyte fraction. ACS patients exhibited the highest levels of cell surface-associated AnxA1 protein while levels in post-ACS patients and controls were similar. Ex vivo assays showed that PBMCs from post-ACS patients were more prone to release IL-6. Glucocorticoid sensitivity correlated with cell surface-associated AnxA1 protein in peripheral monocytes. Dexamethasone also induced upregulation of AnxA1 mRNA.

    AnxA1 expression in PBMCs is closely associated with glucocorticoid actions and cell surface associated AnxA1 appears to be a marker of glucocorticoid sensitivity. Although still speculative, a “normal” expression of cell surface-associated AnxA1 in post-ACS patients may suggest that glucocorticoid actions in vivo are insufficient to provide adequate anti-inflammatory effects in these patients.

  • 48.
    Bergström, Ida
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences.
    Lundberg, Anna
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences.
    Reutelingsperger, Chris
    Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands.
    Ernerudh, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Inflammation Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Immunology and Transfusion Medicine.
    Särndahl, Eva
    Department of Clinical Medicine, School of Health and Medical Sciences, and iRiSC - Inflammatory 18 Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
    Jonasson, Lena
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Cardiology in Linköping.
    Higher expression of annexin A1 in 1 CD56+ than in CD56-T cells: Potential implications for coronary artery disease2014Manuscript (preprint) (Other academic)
    Abstract [en]

    Background: Increased proportions of circulating proinflammatory CD56+ T cells have been reported in patients with coronary artery disease (CAD). Yet, little is known about regulation of these cells. In the present study, we investigated the expression and potential role of the glucocorticoid-mediated protein annexin A1 (AnxA1) in CD56+ and CD56-T cell subsets, with focus on CAD.

    Methods and Results: We included totally 52 healthy individuals, 28 patients with acute coronary syndrome (ACS) and 57 patients with a history of ACS. AnxA1 mRNA expression was assessed in peripheral blood mononuclear cells. AnxA1 protein expression (total and cell surface-associated) was measured by whole blood flow cytometry in circulating CD56+ and CD56- T cell subsets. Furthermore, inhibitory effects of dexamethasone and/or recombinant AnxA1 on cytokine secretion by CD56+ and CD56- T cells were explored in vitro. We found that CD56+ T cells (the majority CD8+), expressed higher levels of AnxA1 mRNA and protein than did CD56- T cells. When comparing CAD patients with healthy controls, significantly higher levels of cell surface-associated AnxA1 expression were seen in patients, most pronounced in ACS patients. In vitro, dexamethasone reduced cytokine secretion by CD56+ T cells, whereas AnxA1 alone had no effect, and AnxA1 combined with dexamethasone abolished the dexamethasone-induced suppressive effects.

    Conclusion: AnxA1 was expressed more abundantly in proinflammatory CD56+ T cells. Patients with ACS exhibited increased levels of cell surface-associated AnxA1, thus indicating increased activation of the AnxA1 pathway. Our data further suggested that AnxA1 might counteract glucocorticoid mediated anti-inflammatory effects in T cells.

  • 49.
    Bialowas, Sonja
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences.
    Hagbom, Marie
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences.
    Karlsson, Thommie
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences.
    Nordgren, Johan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences.
    Sharma, Sumit
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences.
    Magnusson, Karl-­Eric
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences.
    Svensson, Lennart
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences.
    Intracellularly expressed rotavirus NSP4 stimulates release of serotonin (5-HT) from human enterochromaffin cellsManuscript (preprint) (Other academic)
    Abstract [en]

    Rotavirus (RV) is associated with diarrhoea and vomiting, but the mechanisms behind these symptoms remain unresolved. While RV have been shown to infect and stimulate secretion of serotonin (5-hydroxytryptamine; 5-HT) from human enterochromaffin (EC) cells and to infect EC cells in the small intestine of mice, it remains to identify which intracellularly expressed viral protein (VP) being responsible for this novel property.

    To address this issue, human EC cells were transfected with small interfering RNA (siRNA) targeting the structural (VP4, VP6 and VP7) and the non-structural protein 4 (NSP4) followed by infection with Rhesus rotavirus (RRV). siRNA specific to NSP4 (siRNANSP4) significantly attenuated secretion of 5-HT compared to siRNAVP4, siRNAVP6 , siRNAVP7 and non-targeting (Nt) siRNAnt. Intracellular calcium clamping with BABTA/AM showed that intracellularly expressed NSP4-stimulated secretion of 5-HT from EC cells was calcium-dependent. Furthermore RV down-regulated the 5-HT transporter (SERT) mRNA in ileum but not tryptophan hydroxylase 1 (TPH1) mRNA the rate-limiting enzyme for 5-HT synthesis. The unaffected expression of TPH1 mRNA in the intestinal segments suggests that release of 5- HT primarily originates from pre-made 5-HT rather than from newly synthesised 5-HT mRNA. Moreover, down-regulation of SERT mRNA in ileum presumably resulted in reduced re- uptake of 5-HT by SERT to EC cells and thus increased extracellular 5-HT in the small intestine. Moreover, 7/7 infant mice responded following intraperitoneal administration of 5-HT with rapid (<30 min) diarrhoea in dose-dependent manner. In the light of these results and the fact that both 5-HT and NSP4 can induce diarrhoea in mice, a disease mechanism to RV diarrhoea is proposed.

  • 50.
    Bialowas, Sonja
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Hagbom, Marie
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Nordgren, Johan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Karlsson, Thommie
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Sharma, Sumit
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Magnusson, Karl-Eric
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Svensson, Lennart
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Rotavirus and Serotonin Cross-Talk in Diarrhoea2016In: PLOS ONE, E-ISSN 1932-6203, Vol. 11, no 7, p. e0159660-Article in journal (Refereed)
    Abstract [en]

    Rotavirus (RV) has been shown to infect and stimulate secretion of serotonin from human enterochromaffin (EC) cells and to infect EC cells in the small intestine of mice. It remains to identify which intracellularly expressed viral protein(s) is responsible for this novel property and to further establish the clinical role of serotonin in RV infection. First, we found that siRNA specifically silencing NSP4 (siRNA(NSP4)) significantly attenuated secretion of serotonin from Rhesus rotavirus (RRV) infected EC tumor cells compared to siRNA(VP4), siRNA(VP6) and siRNA(VP7). Second, intracellular calcium mobilization and diarrhoeal capacity from virulent and avirulent porcine viruses correlated with the capacity to release serotonin from EC tumor cells. Third, following administration of serotonin, all (10/10) infants, but no (0/8) adult mice, responded with diarrhoea. Finally, blocking of serotonin receptors using Ondansetron significantly attenuated murine RV (strain EDIM) diarrhoea in infant mice (2.9 vs 4.5 days). Ondansetron-treated mice (n = 11) had significantly (p amp;lt; 0.05) less diarrhoea, lower diarrhoea severity score and lower total diarrhoea output as compared to mock-treated mice (n = 9). Similarly, Ondansetron-treated mice had better weight gain than mock-treated animals (p amp;lt; 0.05). A most surprising finding was that the serotonin receptor antagonist significantly (p amp;lt; 0.05) also attenuated total viral shedding. In summary, we show that intracellularly expressed NSP4 stimulates release of serotonin from human EC tumor cells and that serotonin participates in RV diarrhoea, which can be attenuated by Ondansetron.

    Download full text (pdf)
    fulltext
1234567 1 - 50 of 452
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf