liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Almlöf, Mattias
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Stockidentifiering och estimering av diameterfördelning med djupinlärning2020Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [sv]

    Mabema har en produkt som mäter vedvolym av virkestravar på lastbilar. Systemet är byggt på att en bildbehandlingsalgoritm hittar silhuetterna av stockarna på renderade bilder av lastbilstravar. Arbetsgivaren är inte helt nöjd med prestandan av algoritmen och vill utreda om djupinlärning kan förbättra resultatet. Detta arbete undersöker hur diameterfördelningen i varje trave kan estimeras med hjälp av djupinlärning och objektdetektering i synnerhet. Två metoder granskas, den ena hanterar problemet abstrakt med djup regression medan den andra metoden går in i detalj och nyttjar objektigenkänning för att hitta stockändar. Arbetet utvärderar även möjliheterna att träna dessa modeller baserat på data från fysiska simulationer. Det visar sig vara användbart att nyttja syntetisk data för träning och med transfer learning lyckas de syntetiska modellen uppnå kraven Biometria ställer på automatiserad diameterberäkning. Med objektdetektering visar det sig också gå att uppnå samma prestanda som arbetsgivarens algoritm med en bättre stocksökning tre gånger så snabbt eller snabbare.

    Download full text (pdf)
    fulltext
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf