Mabema har en produkt som mäter vedvolym av virkestravar på lastbilar. Systemet är byggt på att en bildbehandlingsalgoritm hittar silhuetterna av stockarna på renderade bilder av lastbilstravar. Arbetsgivaren är inte helt nöjd med prestandan av algoritmen och vill utreda om djupinlärning kan förbättra resultatet. Detta arbete undersöker hur diameterfördelningen i varje trave kan estimeras med hjälp av djupinlärning och objektdetektering i synnerhet. Två metoder granskas, den ena hanterar problemet abstrakt med djup regression medan den andra metoden går in i detalj och nyttjar objektigenkänning för att hitta stockändar. Arbetet utvärderar även möjliheterna att träna dessa modeller baserat på data från fysiska simulationer. Det visar sig vara användbart att nyttja syntetisk data för träning och med transfer learning lyckas de syntetiska modellen uppnå kraven Biometria ställer på automatiserad diameterberäkning. Med objektdetektering visar det sig också gå att uppnå samma prestanda som arbetsgivarens algoritm med en bättre stocksökning tre gånger så snabbt eller snabbare.