liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 4 av 4
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Beställ onlineKöp publikationen >>
    Eskilson, Olof
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biofysik och bioteknik. Linköpings universitet, Tekniska fakulteten.
    Multifunctional Nanocellulose Composite Materials2023Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Nanoparticles (NPs) are particles with more than one dimension between 1 and 100 nm. Because of their small size, they typically display different physical and chemical properties than the corresponding bulk materials. NPs have been used in many different applications, such as in electronics, optics, catalysis, and in biomedicine. Due to their colloidal nature, NPs are often immobilized on a solid substrate, such as glass or polymer-based materials, including biopolymers. Nanocellulose is a biopolymerbased nanomaterial that can be obtained from plants or bacterial biofilms. They can be processed into thin and highly hydrated films with high mechanical strength and can serve as a versatile substrate for NPs. Bacterial cellulose (BC) is also an interesting material for generating wound dressings. The combination of NPs and BC results in soft and flexible nanocomposites (BC-NPs) that can demonstrate novel properties and improve the functionality of wound dressings. 

    BC-NP nanocomposites have previously been obtained by impregnating BC with the reactants needed for synthesis of the NPs and allowing the reaction to proceed in situ, inside and on the surface of the BC. This strategy limits the possibilities to control NP geometry and NP concentration and make synthesis of nanocomposites with more sophisticated compositions very challenging. In addition, the synthesis conditions used can potentially have negative effects on the properties of BC. 

    The work presented in this thesis shows the possibility to produce well-defined, tunable BC-NP nanocomposites using self-assembly under very benign conditions that enable functionalization of BC with a wide range of different types of NPs. In addition to exploring the self-assembly process and the physical properties of these new BC-NP composites, several different applications were investigated. The functionalization of BC with gold nanoparticles (AuNPs) of different sizes and geometries was demonstrated. The resulting materials were used for development of a new sensor transduction technology, exploiting the optical response upon mechanical compression to detect biomolecules. BC-AuNP nanocomposites were also developed for monitoring of protease activity of wound pathogens, for catalysis, and for fabrication of ultra-black materials with unique absorption and scattering profiles of light in the visible and near infrared spectral range. In addition, the self-assembly process could be adopted for generating BC-mesoporous silica nanoparticles (MSNs) nanocomposite wound dressings. The resulting high surface area materials could be used as carriers for pH sensitive dyes. The pH-responsive BC-MSNs demonstrated adequate biocompatibility and allowed for monitoring of wound pH and for assessment of wound status. 

    The strategies for functionalization of BC with inorganic NPs that was developed and explored in this thesis are highly versatile and allow for fabrication of a wide range of multifunctional nanocomposite materials. 

    Delarbeten
    1. Self-Assembly of Mechanoplasmonic Bacterial Cellulose-Metal Nanoparticle Composites
    Öppna denna publikation i ny flik eller fönster >>Self-Assembly of Mechanoplasmonic Bacterial Cellulose-Metal Nanoparticle Composites
    Visa övriga...
    2020 (Engelska)Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 30, nr 40, artikel-id 2004766Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Nanocomposites of metal nanoparticles (NPs) and bacterial nanocellulose (BC) enable fabrication of soft and biocompatible materials for optical, catalytic, electronic, and biomedical applications. Current BC-NP nanocomposites are typically prepared by in situ synthesis of the NPs or electrostatic adsorption of surface functionalized NPs, which limits possibilities to control and tune NP size, shape, concentration, and surface chemistry and influences the properties and performance of the materials. Here a self-assembly strategy is described for fabrication of complex and well-defined BC-NP composites using colloidal gold and silver NPs of different sizes, shapes, and concentrations. The self-assembly process results in nanocomposites with distinct biophysical and optical properties. In addition to antibacterial materials and materials with excellent senor performance, materials with unique mechanoplasmonic properties are developed. The homogenous incorporation of plasmonic gold NPs in the BC enables extensive modulation of the optical properties by mechanical stimuli. Compression gives rise to near-field coupling between adsorbed NPs, resulting in tunable spectral variations and enhanced broadband absorption that amplify both nonlinear optical and thermoplasmonic effects and enables novel biosensing strategies.

    Ort, förlag, år, upplaga, sidor
    WILEY-V C H VERLAG GMBH, 2020
    Nyckelord
    antimicrobials; bacterial cellulose; gold nanoparticles; nanocomposite; sensors
    Nationell ämneskategori
    Materialkemi
    Identifikatorer
    urn:nbn:se:liu:diva-168770 (URN)10.1002/adfm.202004766 (DOI)000557380700001 ()
    Anmärkning

    Funding Agencies|Swedish Foundation for Strategic Research (SFF)Swedish Foundation for Strategic Research [FFL15-0026, RMX18-0039]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009-00971]; VinnovaVinnova [2016-05156]; Knut and Alice Wallenberg FoundationKnut & Alice Wallenberg Foundation [KAW 2016.0231]; Swedish Research CouncilSwedish Research Council [2017-05178, 2015-05002]; Spanish Ministerio de Ciencia, Innovacion y Universidades (MICINN) [MAT2016-77391-R]; Severo Ochoa Centres of Excellence programme - Spanish Research Agency (AEI) [SEV-2017-0706]

    Tillgänglig från: 2020-08-31 Skapad: 2020-08-31 Senast uppdaterad: 2023-05-24
    2. Nanocellulose composite wound dressings for real-time pH wound monitoring
    Öppna denna publikation i ny flik eller fönster >>Nanocellulose composite wound dressings for real-time pH wound monitoring
    Visa övriga...
    2023 (Engelska)Ingår i: Materials Today Bio, ISSN 2590-0064, Vol. 19, artikel-id 100574Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    The skin is the largest organ of the human body. Wounds disrupt the functions of the skin and can have catastrophic consequences for an individual resulting in significant morbidity and mortality. Wound infections are common and can substantially delay healing and can result in non-healing wounds and sepsis. Early diagnosis and treatment of infection reduce risk of complications and support wound healing. Methods for monitoring of wound pH can facilitate early detection of infection. Here we show a novel strategy for integrating pH sensing capabilities in state-of-the-art hydrogel-based wound dressings fabricated from bacterial nanocellulose (BC). A high surface area material was developed by self-assembly of mesoporous silica nanoparticles (MSNs) in BC. By encapsulating a pH-responsive dye in the MSNs, wound dressings for continuous pH sensing with spatiotemporal resolution were developed. The pH responsive BC-based nanocomposites demonstrated excellent wound dressing properties, with respect to conformability, mechanical properties, and water vapor transmission rate. In addition to facilitating rapid colorimetric assessment of wound pH, this strategy for generating functional BC-MSN nanocomposites can be further be adapted for encapsulation and release of bioactive compounds for treatment of hard-to-heal wounds, enabling development of novel wound care materials.

    Ort, förlag, år, upplaga, sidor
    Elsevier, 2023
    Nyckelord
    Bacterial nanocellulose, Wound dressing, pH sensor, Infection, Mesoporous silica nanoparticles
    Nationell ämneskategori
    Biomaterialvetenskap
    Identifikatorer
    urn:nbn:se:liu:diva-192408 (URN)10.1016/j.mtbio.2023.100574 (DOI)000944392500001 ()36852226 (PubMedID)
    Anmärkning

    Funding agencies: This work was supported by the Swedish Foundation for Strategic Research (SFF) grant no. FFL15-0026 and framework grant RMX18-0039 (HEALiX), the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU no. 2009–00971), the competence center FunMat-II that is financially supported by Vinnova (grant no. 2016-05156), the Knut and Alice Wallenberg Foundation (grant no. KAW 2016.0231), the Swedish Research Council (VR) (grant no. 2021-04427) and Swedish strategic research program Bio4Energy. Illustrations were created with BioRender.com. We thank S2Medical AB, Linköping, Sweden, for providing BC.

    Tillgänglig från: 2023-03-15 Skapad: 2023-03-15 Senast uppdaterad: 2024-05-01Bibliografiskt granskad
    Ladda ner fulltext (pdf)
    fulltext
    Ladda ner (png)
    presentationsbild
  • 2.
    Eskilson, Olof
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biofysik och bioteknik. Linköpings universitet, Tekniska fakulteten.
    Lindström, Stefan B
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Sepulveda, Borja
    CSIC, Spain; BIST, Spain.
    Shahjamali, Mohammad
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biofysik och bioteknik. Linköpings universitet, Tekniska fakulteten. Harvard Univ, MA 02138 USA.
    Guell-Grau, Pau
    CSIC, Spain.
    Sivlér, Petter
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Skog, Mårten
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Aronsson, Christopher
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Björk, Emma
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Nyberg, Niklas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biofysik och bioteknik. Linköpings universitet, Tekniska fakulteten.
    Khalaf, Hazem
    Orebro Univ, Sweden.
    Bengtsson, Torbjorn
    Orebro Univ, Sweden.
    James, Jeemol
    Univ Gothenburg, Sweden.
    Ericson, Marica B.
    Univ Gothenburg, Sweden.
    Martinsson, Erik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biofysik och bioteknik. Linköpings universitet, Tekniska fakulteten.
    Selegård, Robert
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biofysik och bioteknik. Linköpings universitet, Tekniska fakulteten.
    Aili, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biofysik och bioteknik. Linköpings universitet, Tekniska fakulteten.
    Self-Assembly of Mechanoplasmonic Bacterial Cellulose-Metal Nanoparticle Composites2020Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 30, nr 40, artikel-id 2004766Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nanocomposites of metal nanoparticles (NPs) and bacterial nanocellulose (BC) enable fabrication of soft and biocompatible materials for optical, catalytic, electronic, and biomedical applications. Current BC-NP nanocomposites are typically prepared by in situ synthesis of the NPs or electrostatic adsorption of surface functionalized NPs, which limits possibilities to control and tune NP size, shape, concentration, and surface chemistry and influences the properties and performance of the materials. Here a self-assembly strategy is described for fabrication of complex and well-defined BC-NP composites using colloidal gold and silver NPs of different sizes, shapes, and concentrations. The self-assembly process results in nanocomposites with distinct biophysical and optical properties. In addition to antibacterial materials and materials with excellent senor performance, materials with unique mechanoplasmonic properties are developed. The homogenous incorporation of plasmonic gold NPs in the BC enables extensive modulation of the optical properties by mechanical stimuli. Compression gives rise to near-field coupling between adsorbed NPs, resulting in tunable spectral variations and enhanced broadband absorption that amplify both nonlinear optical and thermoplasmonic effects and enables novel biosensing strategies.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Eskilson, Olof
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biofysik och bioteknik. Linköpings universitet, Tekniska fakulteten.
    Zattarin, Elisa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biofysik och bioteknik. Linköpings universitet, Tekniska fakulteten.
    Berglund, Linn
    Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden.
    Oksman, Kristiina
    Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden.
    Hanna, Kristina
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Regionledningskontoret, Katastrofmedicinskt centrum.
    Rakar, Jonathan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för kirurgi, ortopedi och onkologi. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Regionledningskontoret, Katastrofmedicinskt centrum.
    Sivlér, Petter
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biofysik och bioteknik. Linköpings universitet, Tekniska fakulteten.
    Skog, Mårten
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biofysik och bioteknik. Linköpings universitet, Tekniska fakulteten.
    Rinklake, Ivana
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Regionledningskontoret, Katastrofmedicinskt centrum.
    Shamasha, Rozalin
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för kirurgi, ortopedi och onkologi. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Regionledningskontoret, Katastrofmedicinskt centrum.
    Sotra, Zeljana
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för kirurgi, ortopedi och onkologi. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Regionledningskontoret, Katastrofmedicinskt centrum.
    Starkenberg, Annika
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för kirurgi, ortopedi och onkologi. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Regionledningskontoret, Katastrofmedicinskt centrum.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Wiman, Emanuel
    Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden.
    Khalaf, Hazem
    Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden.
    Bengtsson, Torbjörn
    Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden.
    Junker, Johan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för kirurgi, ortopedi och onkologi. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Regionledningskontoret, Katastrofmedicinskt centrum.
    Selegård, Robert
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biofysik och bioteknik. Linköpings universitet, Tekniska fakulteten.
    Björk, Emma
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Aili, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biofysik och bioteknik. Linköpings universitet, Tekniska fakulteten.
    Nanocellulose composite wound dressings for real-time pH wound monitoring2023Ingår i: Materials Today Bio, ISSN 2590-0064, Vol. 19, artikel-id 100574Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The skin is the largest organ of the human body. Wounds disrupt the functions of the skin and can have catastrophic consequences for an individual resulting in significant morbidity and mortality. Wound infections are common and can substantially delay healing and can result in non-healing wounds and sepsis. Early diagnosis and treatment of infection reduce risk of complications and support wound healing. Methods for monitoring of wound pH can facilitate early detection of infection. Here we show a novel strategy for integrating pH sensing capabilities in state-of-the-art hydrogel-based wound dressings fabricated from bacterial nanocellulose (BC). A high surface area material was developed by self-assembly of mesoporous silica nanoparticles (MSNs) in BC. By encapsulating a pH-responsive dye in the MSNs, wound dressings for continuous pH sensing with spatiotemporal resolution were developed. The pH responsive BC-based nanocomposites demonstrated excellent wound dressing properties, with respect to conformability, mechanical properties, and water vapor transmission rate. In addition to facilitating rapid colorimetric assessment of wound pH, this strategy for generating functional BC-MSN nanocomposites can be further be adapted for encapsulation and release of bioactive compounds for treatment of hard-to-heal wounds, enabling development of novel wound care materials.

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Guell-Grau, Pau
    et al.
    Inst Microelect Barcelona IMBCNM CSIC, Spain; CSIC, Spain; BIST, Spain; Networking Res Ctr Bioengn Biomat & Nanomed CIBER, Spain.
    Pi, Francesc
    Univ Autonoma Barcelona, Spain.
    Villa, Rosa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biofysik och bioteknik. Linköpings universitet, Tekniska fakulteten. Inst Microelect Barcelona IMBCNM CSIC, Spain; Networking Res Ctr Bioengn Biomat & Nanomed CIBER, Spain.
    Eskilson, Olof
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biofysik och bioteknik. Linköpings universitet, Tekniska fakulteten.
    Aili, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biofysik och bioteknik. Linköpings universitet, Tekniska fakulteten.
    Nogues, Josep
    CSIC, Spain; BIST, Spain; ICREA, Spain.
    Sepulveda, Borja
    Inst Microelect Barcelona IMBCNM CSIC, Spain.
    Alvarez, Mar
    Inst Microelect Barcelona IMBCNM CSIC, Spain.
    Elastic Plasmonic-Enhanced Fabry-Perot Cavities with Ultrasensitive Stretching Tunability2022Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 34, nr 7, artikel-id 2106731Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The emerging stretchable photonics field faces challenges, like the robust integration of optical elements into elastic matrices or the generation of large optomechanical effects. Here, the first stretchable plasmonic-enhanced and wrinkled Fabry-Perot (FP) cavities are demonstrated, which are composed of self-embedded arrays of Au nanostructures at controlled depths into elastomer films. The novel self-embedding process is triggered by the Au nanostructures catalytic activity, which locally increases the polymer curing rate, thereby inducing a mechanical stress that simultaneously pulls the Au nanostructures into the polymer and forms a wrinkled skin layer. This geometry yields unprecedented optomechanical effects produced by the coupling of the broad plasmonic modes of the Au nanostructures and the FP modes, which are modulated by the wrinkled optical cavity. As a result, film stretching induces drastic changes in both the spectral position and intensity of the plasmonic-enhanced FP resonances due to the simultaneous cavity thickness reduction and cavity wrinkle flattening, thus increasing the cavity finesse. These optomechanical effects are exploited to demonstrate new strain-sensing approaches, achieving a strain detection limit of 0.006%, i.e., 16-fold lower than current optical strain-detection schemes.

1 - 4 av 4
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf