liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Dilip Deb, Kaushik
    et al.
    DiponEd BioIntelligence LLP, Bangalore, India.
    Griffith, May
    Linköping University, Department of Clinical and Experimental Medicine, Ophthalmology. Linköping University, Faculty of Health Sciences.
    De Muinck, Ebo
    Linköping University, Department of Medical and Health Sciences, Cardiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Cardiology in Linköping.
    Rafat, Mehrdad
    Linköping University, Department of Clinical and Experimental Medicine, Regenerative Medicine. Linköping University, Faculty of Health Sciences. Department of Regenerative Medicine (IGEN) .
    Nanotechnology in stem cells research: advances and applications2012In: Frontiers in Bioscience, ISSN 1093-9946, E-ISSN 1093-4715, Vol. 17, p. 1747-1760Article in journal (Refereed)
    Abstract [en]

    Human beings suffer from a myriad of disorders caused by biochemical or biophysical alteration of physiological systems leading to organ failure. For a number of these conditions, stem cells and their enormous reparative potential may be the last hope for restoring function to these failing organ or tissue systems. To harness the potential of stem cells for biotherapeutic applications, we need to work at the size scale of molecules and processes that govern stem cells fate. Nanotechnology provides us with such capacity. Therefore, effective amalgamation of nanotechnology and stem cells - medical nanoscience or nanomedicine - offers immense benefits to the human race. The aim of this paper is to discuss the role and importance of nanotechnology in stem cell research by focusing on several important areas such as stem cell visualization and imaging, genetic modifications and reprogramming by gene delivery systems, creating stem cell niche, and similar therapeutic applications.

  • 2.
    Jangamreddy, Jaganmohan
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Ghavami, Saeid
    University of Manitoba, Winnipeg, Canada.
    Grabarek, Jerzy
    Pomeranian Medical University, Szczecin, Poland.
    Kratz, Gunnar
    Linköping University, Department of Clinical and Experimental Medicine, Regenerative Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Wiechec, Emilia
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Department of Clinical and Experimental Medicine, Regenerative Medicine. Linköping University, Faculty of Health Sciences.
    Fredriksson, Bengt-Arne
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Rao, Rama K.
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Cieślar-Pobuda, Artur
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Department of Clinical and Experimental Medicine, Regenerative Medicine. Linköping University, Faculty of Health Sciences.
    Panigrahi, Soumya
    Lerner Research Institute, Cleveland, OH, USA.
    Łos, Marek
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Department of Clinical and Experimental Medicine, Regenerative Medicine. Linköping University, Faculty of Health Sciences.
    Salinomycin induces activation of autophagy, mitophagy and affects mitochondrial polarity: Differences between primary and cancer cells2013In: Biochimica et Biophysica Acta. Molecular Cell Research, ISSN 0167-4889, E-ISSN 1879-2596, Vol. 1833, no 9, p. 2057-2069Article in journal (Refereed)
    Abstract [en]

    The molecular mechanism of Salinomycin's toxicity is not fully understood. Various studies reported that Ca2 +, cytochrome c, and caspase activation play a role in Salinomycin-induced cytotoxicity. Furthermore, Salinomycin may target Wnt/β-catenin signaling pathway to promote differentiation and thus elimination of cancer stem cells. In this study, we show a massive autophagic response to Salinomycin (substantially stronger than to commonly used autophagic inducer Rapamycin) in prostrate-, breast cancer cells, and to lesser degree in human normal dermal fibroblasts. Interestingly, autophagy induced by Salinomycin is a cell protective mechanism in all tested cancer cell lines. Furthermore, Salinomycin induces mitophagy, mitoptosis and increased mitochondrial membrane potential (∆Ψ) in a subpopulation of cells. Salinomycin strongly, and in time-dependent manner decreases cellular ATP level. Contrastingly, human normal dermal fibroblasts treated with Salinomycin show some initial decrease in mitochondrial mass, however they are largely resistant to Salinomycin-triggered ATP-depletion. Our data provide new insight into the molecular mechanism of preferential toxicity of Salinomycin towards cancer cells, and suggest possible clinical application of Salinomycin in combination with autophagy inhibitors (i.e. clinically-used Chloroquine). Furthermore, we discuss preferential Salinomycins toxicity in the context of Warburg effect.

    Download full text (pdf)
    fulltext
  • 3.
    Lagali, Neil
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Ophthalmology. Linköping University, Faculty of Health Sciences.
    Griffith, May
    Linköping University, Department of Clinical and Experimental Medicine, Regenerative Medicine. Linköping University, Faculty of Health Sciences.
    Fagerholm, Per
    Linköping University, Department of Clinical and Experimental Medicine, Ophthalmology. Linköping University, Faculty of Health Sciences.
    In vivo confocal microscopy of the cornea to assess tissue regenerative response after biomaterial implantation in humans.2013In: Corneal Regenerative Medicine: Methods and ProtocolsPart IV / [ed] Bernice Wright; Che J Connon, Humana Press, 2013, Vol. 1014, p. 211-23Chapter in book (Other academic)
    Abstract [en]

    Laser-scanning in vivo confocal microscopy (IVCM) of the cornea is becoming an increasingly popular tool to examine the living human cornea with cellular-level detail in both healthy and pathologic states. Here, we describe the use of the IVCM technique to examine the processes of tissue healing and regeneration in the living human eye after biomaterial implantation. The regenerative response can be assessed by performing longitudinal IVCM imaging of a laboratory-made, cell-free biomaterial, after direct implantation into a pathologic eye as a primary alternative to human donor tissue transplantation.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf