liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 42 of 42
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abadias, Gregory
    et al.
    Univ Poitiers, France.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Patsalas, Panos
    Aristotle Univ Thessaloniki, Greece.
    Preface2020In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 404, article id 126450Article in journal (Other academic)
    Abstract [en]

    n/a

  • 2.
    Aijaz, Asim
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology. Uppsala University, Sweden.
    Louring, Sascha
    Aarhus University, Denmark; Danish Technology Institute, Denmark.
    Lundin, Daniel
    University of Paris Saclay, France.
    Kubart, Tomas
    Uppsala University, Sweden.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Helmersson, Ulf
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, Faculty of Science & Engineering.
    Synthesis of hydrogenated diamondlike carbon thin films using neon-acetylene based high power impulse magnetron sputtering discharges2016In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 34, no 6, article id 061504Article in journal (Refereed)
    Abstract [en]

    Hydrogenated diamondlike carbon (DLC:H) thin films exhibit many interesting properties that can be tailored by controlling the composition and energy of the vapor fluxes used for their synthesis. This control can be facilitated by high electron density and/or high electron temperature plasmas that allow one to effectively tune the gas and surface chemistry during film growth, as well as the degree of ionization of the film forming species. The authors have recently demonstrated by adding Ne in an Ar-C high power impulse magnetron sputtering (HiPIMS) discharge that electron temperatures can be effectively increased to substantially ionize C species [Aijaz et al., Diamond Relat. Mater. 23, 1 (2012)]. The authors also developed an Ar-C2H2 HiPIMS process in which the high electron densities provided by the HiPIMS operation mode enhance gas phase dissociation reactions enabling control of the plasma and growth chemistry [Aijaz et al., Diamond Relat. Mater. 44, 117 (2014)]. Seeking to further enhance electron temperature and thereby promote electron impact induced interactions, control plasma chemical reaction pathways, and tune the resulting film properties, in this work, the authors synthesize DLC: H thin films by admixing Ne in a HiPIMS based Ar/C2H2 discharge. The authors investigate the plasma properties and discharge characteristics by measuring electron energy distributions as well as by studying discharge current characteristics showing an electron temperature enhancement in C2H2 based discharges and the role of ionic contribution to the film growth. These discharge conditions allow for the growth of thick (amp;gt;1 mu m) DLC: H thin films exhibiting low compressive stresses (similar to 0.5 GPa), high hardness (similar to 25 GPa), low H content (similar to 11%), and density in the order of 2.2 g/cm(3). The authors also show that film densification and change of mechanical properties are related to H removal by ion bombardment rather than subplantation. (C) 2016 American Vacuum Society.

    Download full text (pdf)
    fulltext
  • 3.
    Almyras, Georgios
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Sangiovanni, Davide Giuseppe
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering. Ruhr Univ Bochum, Germany.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Semi-Empirical Force-Field Model For The Ti1-XAlXN (0 ≤ x ≤ 1) System2019In: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 12, no 2, article id 215Article in journal (Refereed)
    Abstract [en]

    We present a modified embedded atom method (MEAM) semi-empirical force-field model for the Ti1-xAlxN (0 x 1) alloy system. The MEAM parameters, determined via an adaptive simulated-annealing (ASA) minimization scheme, optimize the models predictions with respect to 0 K equilibrium volumes, elastic constants, cohesive energies, enthalpies of mixing, and point-defect formation energies, for a set of approximate to 40 elemental, binary, and ternary Ti-Al-N structures and configurations. Subsequently, the reliability of the model is thoroughly verified against known finite-temperature thermodynamic and kinetic properties of key binary Ti-N and Al-N phases, as well as properties of Ti1-xAlxN (0 amp;lt; x amp;lt; 1) alloys. The successful outcome of the validation underscores the transferability of our model, opening the way for large-scale molecular dynamics simulations of, e.g., phase evolution, interfacial processes, and mechanical response in Ti-Al-N-based alloys, superlattices, and nanostructures.

    Download full text (pdf)
    fulltext
  • 4.
    Chason, E.
    et al.
    Brown University, USA.
    Karlson, M.
    Brown University, USA.
    Colin, J. J.
    University of Poitiers, France.
    Magnfält, Daniel
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Abadias, G.
    University of Poitiers, France.
    A kinetic model for stress generation in thin films grown from energetic vapor fluxes2016In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 119, no 14, article id 145307Article in journal (Refereed)
    Abstract [en]

    We have developed a kinetic model for residual stress generation in thin films grown from energetic vapor fluxes, encountered, e.g., during sputter deposition. The new analytical model considers sub-surface point defects created by atomic peening, along with processes treated in already existing stress models for non-energetic deposition, i.e., thermally activated diffusion processes at the surface and the grain boundary. According to the new model, ballistically induced subsurface defects can get incorporated as excess atoms at the grain boundary, remain trapped in the bulk, or annihilate at the free surface, resulting in a complex dependence of the steady-state stress on the grain size, the growth rate, as well as the energetics of the incoming particle flux. We compare calculations from the model with in situ stress measurements performed on a series of Mo films sputter-deposited at different conditions and having different grain sizes. The model is able to reproduce the observed increase of compressive stress with increasing growth rate, behavior that is the opposite of what is typically seen under non-energetic growth conditions. On a grander scale, this study is a step towards obtaining a comprehensive understanding of stress generation and evolution in vapor deposited polycrystalline thin films. Published by AIP Publishing.

  • 5.
    Colin, Jonathan
    et al.
    Univ Poitiers, France.
    Jamnig, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering. Univ Poitiers, France.
    Furgeaud, Clarisse
    Univ Poitiers, France.
    Michel, Anny
    Univ Poitiers, France.
    Pliatsikas, Nikolaos
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Abadias, Gregory
    Univ Poitiers, France.
    In Situ and Real-Time Nanoscale Monitoring of Ultra-Thin Metal Film Growth Using Optical and Electrical Diagnostic Tools2020In: Nanomaterials, E-ISSN 2079-4991, Vol. 10, no 11, article id 2225Article, review/survey (Refereed)
    Abstract [en]

    Continued downscaling of functional layers for key enabling devices has prompted the development of characterization tools to probe and dynamically control thin film formation stages and ensure the desired film morphology and functionalities in terms of, e.g., layer surface smoothness or electrical properties. In this work, we review the combined use of in situ and real-time optical (wafer curvature, spectroscopic ellipsometry) and electrical probes for gaining insights into the early growth stages of magnetron-sputter-deposited films. Data are reported for a large variety of metals characterized by different atomic mobilities and interface reactivities. For fcc noble-metal films (Ag, Cu, Pd) exhibiting a pronounced three-dimensional growth on weakly-interacting substrates (SiO2, amorphous carbon (a-C)), wafer curvature, spectroscopic ellipsometry, and resistivity techniques are shown to be complementary in studying the morphological evolution of discontinuous layers, and determining the percolation threshold and the onset of continuous film formation. The influence of growth kinetics (in terms of intrinsic atomic mobility, substrate temperature, deposition rate, deposition flux temporal profile) and the effect of deposited energy (through changes in working pressure or bias voltage) on the various morphological transition thicknesses is critically examined. For bcc transition metals, like Fe and Mo deposited on a-Si, in situ and real-time growth monitoring data exhibit transient features at a critical layer thickness of similar to 2 nm, which is a fingerprint of an interface-mediated crystalline-to-amorphous phase transition, while such behavior is not observed for Ta films that crystallize into their metastable tetragonal beta-Ta allotropic phase. The potential of optical and electrical diagnostic tools is also explored to reveal complex interfacial reactions and their effect on growth of Pd films on a-Si or a-Ge interlayers. For all case studies presented in the article, in situ data are complemented with and benchmarked against ex situ structural and morphological analyses.

    Download full text (pdf)
    fulltext
  • 6. Order onlineBuy this publication >>
    Elofsson, Viktor
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Nanoscale structure forming processes: Metal thin films grown far-from-equilibrium2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Thin film growth from the vapor phase has for a long time intrigued researchers endeavouring to unravel and understand atomistic surface processes that govern film formation. Their motivation has not been purely scientific, but also driven by numerous applications where this understanding is paramount to knowledge-based design of novel film materials with tailored properties.

    Within the above framework, this thesis investigates growth of metal films on weakly bonding substrates, a combination of great relevance for applications concerning e.g., catalysis, graphene metallization and architectural glazing. When metal vapor condenses on weakly bonding substrates three dimensional islands nucleate, grow and coalesce prior to forming a continuous film. The combined effect of these initial growth stages on film formation and morphology evolution is studied using pulsed vapor fluxes for the model system Ag/SiO2. It is shown that the competition between island growth and coalescence completion determines structure evolution. The effect of the initial growth stages on film formation is also examined for the tilted columnar microstructure obtained when vapor arrives at an angle that deviates from the substrate surface normal. This is done using two metals with distinctly different nucleation behaviour, and the findings suggest that the column tilt angle is set by nucleation conditions in conjunction with shadowing of the vapor flux by adjacent islands. Vapor arriving at an angle can in addition result in films that exhibit preferred crystallographic orientations, both out-of-plane and in-plane. Their emergence is commonly described by an evolutionary growth model, which for some materials predict a double in-plane alignment that has not been observed experimentally. Here, an experiment is designed to replicate the model’s growth conditions, confirming the existence of double in-plane alignment.

    New and added film functionalities can further be unlocked by alloying. Properties are then largely set by chemistry and atomic arrangement, where the latter can be affected by thermodynamics, kinetics and vapor flux modulation. Their combined effect on atomic arrangement is here unravelled by presenting a research methodology that encompasses high resolution vapor flux modulation, nanoscale structure v vi probes and growth simulations. The methodology is deployed to study the immiscible Ag-Cu and miscible Ag-Au model systems, for which it is shown that capping of Cu by Ag atoms via near surface diffusion processes and rough morphology of the Ag-Au growth front are the decisive structure forming processes in each respective system.

    The results generated in this thesis are of relevance for tuning structure of metal films grown on weakly bonding substrates. They also indicate that improved growth models are required to accurately describe structure evolution and emergence of a preferred in-plane orientation in films where vapor arrives at an angle that deviates from the substrate surface normal. In addition, this thesis presents a methodology that can be used to identify and understand structure forming processes in multicomponent films, which may enable tailoring of atomic arrangement and related properties in technologically relevant material systems.

    List of papers
    1. Time-domain and energetic bombardment effects on the nucleation and coalescence of thin metal films on amorphous substrates
    Open this publication in new window or tab >>Time-domain and energetic bombardment effects on the nucleation and coalescence of thin metal films on amorphous substrates
    Show others...
    2013 (English)In: Journal of Physics D: Applied Physics, ISSN 0022-3727, E-ISSN 1361-6463, Vol. 46, no 21, article id 215303Article in journal (Refereed) Published
    Abstract [en]

    Pulsed, ionized vapour fluxes, generated from high power impulse magnetron sputtering (HiPIMS) discharges, are employed to study the effects of time-domain and energetic bombardment on the nucleation and coalescence characteristics during Volmer–Weber growth of metal (Ag) films on amorphous (SiO2) substrates. In situ monitoring of the film growth, by means of wafer curvature measurements and spectroscopic ellipsometry, is used to determine the film thickness where a continuous film is formed. This thickness decreases from ~210 to ~140 Å when increasing the pulsing frequency for a constant amount of material deposited per pulse or when increasing the amount of material deposited per pulse and the energy of the film forming species for a constant pulsing frequency. Estimations of adatom lifetimes and the coalescence times show that there are conditions at which these times are within the range of the modulation of the vapour flux. Thus, nucleation and coalescence processes can be manipulated by changing the temporal profile of the vapour flux. We suggest that other than for elucidating the atomistic mechanisms that control pulsed growth processes, the interplay between the time scales for diffusion, coalescence and vapour flux pulsing can be used as a tool to determine characteristic surface diffusion and island coalescence parameters.

    Place, publisher, year, edition, pages
    Institute of Physics (IOP), 2013
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-95508 (URN)10.1088/0022-3727/46/21/215303 (DOI)000319116300009 ()
    Note

    Funding Agencies|Swedish Research Council|VR 621-2011-4280|COST Action Highly Ionized Pulsed Plasmas|MP0804|Linkoping University via the LiU Research Fellows program||.

    The previous status of the article was Manuscript and the working title was Time-domain and energetic bombardment effects on the nucleation and post-nucleation characteristics during none-quilibrium film synthesis.

    Available from: 2013-07-05 Created: 2013-07-05 Last updated: 2017-12-06Bibliographically approved
    2. Unravelling the Physical Mechanisms that Determine Microstructural Evolution of Ultrathin Volmer-Weber Films
    Open this publication in new window or tab >>Unravelling the Physical Mechanisms that Determine Microstructural Evolution of Ultrathin Volmer-Weber Films
    2014 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 116, no 4, p. 044302-Article in journal (Refereed) Published
    Abstract [en]

    The initial formation stages (i.e., island nucleation, island growth, and island coalescence) set characteristic length scales during growth of thin films from the vapour phase. They are, thus, decisive for morphological and microstructural features of films and nanostructures. Each of the initial formation stages has previously been well-investigated separately for the case of Volmer-Weber growth, but knowledge on how and to what extent each stage individually and all together affect the microstructural evolution is still lacking. Here we address this question using growth of Ag on SiO2 from pulsed vapour fluxes as a case study. By combining in situ growth monitoring, ex situ imaging and growth simulations we systematically study the growth evolution all the way from nucleation to formation of a continuous film and establish the effect of the vapour flux time domain on the scaling behaviour of characteristic growth transitions (elongation transition, percolation and continuous film formation). Our data reveal a pulsing frequency dependence for the characteristic film growth transitions, where the nominal transition thickness decreases with increasing pulsing frequency up to a certain value after which a steady-state behaviour is observed. The scaling behaviour is shown to result from differences in island sizes and densities, as dictated by the initial film formation stages. These differences are determined solely by the interplay between the characteristics of the vapour flux and time required for island coalescence to be completed. In particular, our data provide evidence that the steady-state scaling regime of the characteristic growth transitions is caused by island growth that hinders coalescence from being completed, leading to a coalescence-free growth regime.

    National Category
    Physical Sciences
    Identifiers
    urn:nbn:se:liu:diva-103920 (URN)10.1063/1.4890522 (DOI)000340710700078 ()
    Available from: 2014-02-03 Created: 2014-02-03 Last updated: 2018-01-11
    3. Tilt of the columnar microstructure in off-normally deposited thin films using highly ionized vapor fluxes
    Open this publication in new window or tab >>Tilt of the columnar microstructure in off-normally deposited thin films using highly ionized vapor fluxes
    2013 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 113, no 17, p. 7 pages-Article in journal (Refereed) Published
    Abstract [en]

    The tilt of the columnar microstructure has been studied for Cu and Cr thin films grown off-normally using highly ionized vapor fluxes, generated by the deposition technique high power impulse magnetron sputtering. It is found that the relatively large column tilt (with respect to the substrate normal) observed for Cu films decreases as the ionization degree of the deposition flux increases. On the contrary, Cr columns are found to grow relatively close to the substrate normal and the column tilt is independent from the ionization degree of the vapor flux when films are deposited at room temperature. The Cr column tilt is only found to be influenced by the ionized fluxes when films are grown at elevated temperatures, suggesting that film morphology during the film nucleation stage is also important in affecting column tilt. A phenomenological model that accounts for the effect of atomic shadowing at different nucleation conditions is suggested to explain the results.

    Place, publisher, year, edition, pages
    American Institute of Physics (AIP), 2013
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-94608 (URN)10.1063/1.4804066 (DOI)000319292800398 ()
    Available from: 2013-06-27 Created: 2013-06-27 Last updated: 2017-12-06Bibliographically approved
    4. Double in-plane alignment in biaxially textured thin films
    Open this publication in new window or tab >>Double in-plane alignment in biaxially textured thin films
    2014 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 105, no 23, p. 233113-Article in journal (Refereed) Published
    Abstract [en]

    The scientific interest and technological relevance of biaxially textured polycrystalline thin films stem from their microstructure that resembles that of single crystals. To explain the origin and predict the type of biaxial texture in off-normally deposited films, Mahieu et al. have developed an analytical model [S. Mahieu et al., Thin Solid Films 515, 1229 (2006)]. For certain materials, this model predicts the occurrence of a double in-plane alignment, however, experimentally only a single in-plane alignment has been observed and the reason for this discrepancy is still unknown. The model calculates the resulting in-plane alignment by considering the growth of faceted grains with an out-of-plane orientation that corresponds to the predominant film out-of-plane texture. This approach overlooks the fact that in vapor condensation experiments where growth kinetics is limited and only surface diffusion is active, out-of-plane orientation selection is random during grain nucleation and happens only upon grain impingement. Here, we compile and implement an experiment that is consistent with the key assumptions set forth by the in-plane orientation selection model by Mahieu et al.; a Cr film is grown off-normally on a fiber textured Ti epilayer to pre-determine the out-of-plane orientation and only allow for competitive growth with respect to the in-plane alignment. Our results show unambiguously a biaxially textured Cr (110) film that possesses a double in-plane alignment, in agreement with predictions of the in-plane selection model. Thus, a long standing discrepancy in the literature is resolved, paving the way towards more accurate theoretical descriptions and hence knowledge-based control of microstructure evolution in biaxially textured thin films.

    Place, publisher, year, edition, pages
    American Institute of Physics (AIP), 2014
    National Category
    Physical Sciences
    Identifiers
    urn:nbn:se:liu:diva-113499 (URN)10.1063/1.4903932 (DOI)000346266000086 ()
    Note

    Funding Agencies|Linkoping University

    Available from: 2015-01-19 Created: 2015-01-19 Last updated: 2017-12-05
    5. Atomic arrangement in immiscible Ag-Cu alloys synthesized far-from-equilibrium
    Open this publication in new window or tab >>Atomic arrangement in immiscible Ag-Cu alloys synthesized far-from-equilibrium
    Show others...
    2016 (English)In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 110, p. 114-121Article in journal (Refereed) Published
    Abstract [en]

    Physical attributes of multicomponent materials of a given chemical composition are determined by atomic arrangement at property-relevant length scales. A potential route to access a vast array of atomic configurations for material property tuning is by synthesis of multicomponent thin films using vapor fluxes with their deposition pattern modulated in the sub-monolayer regime. However, the applicability of this route for creating new functional materials is impeded by the fact that a fundamental understanding of the combined effect of sub-monolayer flux modulation, kinetics and thermodynamics on atomic arrangement is not available in the literature. Here we present a research strategy and verify its viability for addressing the aforementioned gap in knowledge. This strategy encompasses thin film synthesis using a route that generates multi-atomic fluxes with sub-monolayer resolution and precision over a wide range of experimental conditions, deterministic growth simulations and nanoscale micro structural probes. Investigations are focused on structure formation within the archetype immiscible Ag-Cu binary system, revealing that atomic arrangement at different length scales is governed by the arrival pattern of the film forming species, in conjunction with diffusion of near-surface Ag atoms to encapsulate 3D Cu islands growing on 2D Ag layers. The knowledge generated and the methodology presented herein provides the scientific foundation for tailoring atomic arrangement and physical properties in a wide range of miscible and immiscible multinary systems. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

    Place, publisher, year, edition, pages
    PERGAMON-ELSEVIER SCIENCE LTD, 2016
    Keywords
    Ag-Cu thin films; MD simulations; Modulated vapor fluxes; Nonequilibrium synthesis; Immiscible alloys
    National Category
    Physical Sciences
    Identifiers
    urn:nbn:se:liu:diva-128722 (URN)10.1016/j.actamat.2016.03.023 (DOI)000374810400012 ()
    Note

    Funding Agencies|Linkoping University [Dnr-LiU-2015-01510]; Swedish Research Council [VR 621-2011-5312]; AForsk through the project "Towards Next Generation of Energy Saving Windows"

    Available from: 2016-06-01 Created: 2016-05-30 Last updated: 2019-06-28
    6. Structure formation in Ag-X (X = Au, Cu) alloys synthesized far-from-equilibrium
    Open this publication in new window or tab >>Structure formation in Ag-X (X = Au, Cu) alloys synthesized far-from-equilibrium
    Show others...
    2018 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 123, no 16Article in journal (Refereed) Published
    Abstract [en]

    We employ sub-monolayer, pulsed Ag and Au vapor fluxes, along with deterministic growth simulations, and nanoscale probes to study structure formation in miscible Ag-Au films synthesized under far-from-equilibrium conditions. Our results show that nanoscale atomic arrangement is primarily determined by roughness build up at the film growth front, whereby larger roughness leads to increased intermixing between Ag and Au. These findings suggest a different structure formation pathway as compared to the immiscible Ag-Cu system for which the present study, in combination with previously published data, reveals that no significant roughness is developed, and the local atomic structure is predominantly determined by the tendency of Ag and Cu to phase-separate.

    Place, publisher, year, edition, pages
    New York: A I P Publishing LLC, 2018
    National Category
    Inorganic Chemistry Other Physics Topics Atom and Molecular Physics and Optics Condensed Matter Physics Physical Chemistry
    Identifiers
    urn:nbn:se:liu:diva-147730 (URN)10.1063/1.5018907 (DOI)000431147200150 ()
    Note

    Funding agencies: Linkoping University via the "LiU Research Fellows Program"; Linkoping University via the "LiU Career Contract" [Dnr-LiU-2015-01510]; Swedish Research Council [VR-2011-5312, VR-2015-04630]

    Available from: 2018-05-08 Created: 2018-05-08 Last updated: 2019-06-28Bibliographically approved
    Download full text (pdf)
    Nanoscale structure forming processes: Metal thin films grown far-from-equilibrium
    Download (pdf)
    omslag
    Download (jpg)
    presentationsbild
  • 7.
    Elofsson, Viktor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Almyras, Georgios
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Lu, B.
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Boyd, Robert
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, Faculty of Science & Engineering.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Atomic arrangement in immiscible Ag-Cu alloys synthesized far-from-equilibrium2016In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 110, p. 114-121Article in journal (Refereed)
    Abstract [en]

    Physical attributes of multicomponent materials of a given chemical composition are determined by atomic arrangement at property-relevant length scales. A potential route to access a vast array of atomic configurations for material property tuning is by synthesis of multicomponent thin films using vapor fluxes with their deposition pattern modulated in the sub-monolayer regime. However, the applicability of this route for creating new functional materials is impeded by the fact that a fundamental understanding of the combined effect of sub-monolayer flux modulation, kinetics and thermodynamics on atomic arrangement is not available in the literature. Here we present a research strategy and verify its viability for addressing the aforementioned gap in knowledge. This strategy encompasses thin film synthesis using a route that generates multi-atomic fluxes with sub-monolayer resolution and precision over a wide range of experimental conditions, deterministic growth simulations and nanoscale micro structural probes. Investigations are focused on structure formation within the archetype immiscible Ag-Cu binary system, revealing that atomic arrangement at different length scales is governed by the arrival pattern of the film forming species, in conjunction with diffusion of near-surface Ag atoms to encapsulate 3D Cu islands growing on 2D Ag layers. The knowledge generated and the methodology presented herein provides the scientific foundation for tailoring atomic arrangement and physical properties in a wide range of miscible and immiscible multinary systems. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • 8.
    Elofsson, Viktor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Almyras, Georgios
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Lü, Bo
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Garbrecht, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Boyd, Robert
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, Faculty of Science & Engineering.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Structure formation in Ag-X (X = Au, Cu) alloys synthesized far-from-equilibrium2018In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 123, no 16Article in journal (Refereed)
    Abstract [en]

    We employ sub-monolayer, pulsed Ag and Au vapor fluxes, along with deterministic growth simulations, and nanoscale probes to study structure formation in miscible Ag-Au films synthesized under far-from-equilibrium conditions. Our results show that nanoscale atomic arrangement is primarily determined by roughness build up at the film growth front, whereby larger roughness leads to increased intermixing between Ag and Au. These findings suggest a different structure formation pathway as compared to the immiscible Ag-Cu system for which the present study, in combination with previously published data, reveals that no significant roughness is developed, and the local atomic structure is predominantly determined by the tendency of Ag and Cu to phase-separate.

    Download full text (pdf)
    fulltext
  • 9.
    Elofsson, Viktor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, The Institute of Technology.
    Saraiva, M.
    Sandvik Coromant AB, Sweden.
    Boyd, Robert
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, The Institute of Technology.
    Double in-plane alignment in biaxially textured thin films2014In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 105, no 23, p. 233113-Article in journal (Refereed)
    Abstract [en]

    The scientific interest and technological relevance of biaxially textured polycrystalline thin films stem from their microstructure that resembles that of single crystals. To explain the origin and predict the type of biaxial texture in off-normally deposited films, Mahieu et al. have developed an analytical model [S. Mahieu et al., Thin Solid Films 515, 1229 (2006)]. For certain materials, this model predicts the occurrence of a double in-plane alignment, however, experimentally only a single in-plane alignment has been observed and the reason for this discrepancy is still unknown. The model calculates the resulting in-plane alignment by considering the growth of faceted grains with an out-of-plane orientation that corresponds to the predominant film out-of-plane texture. This approach overlooks the fact that in vapor condensation experiments where growth kinetics is limited and only surface diffusion is active, out-of-plane orientation selection is random during grain nucleation and happens only upon grain impingement. Here, we compile and implement an experiment that is consistent with the key assumptions set forth by the in-plane orientation selection model by Mahieu et al.; a Cr film is grown off-normally on a fiber textured Ti epilayer to pre-determine the out-of-plane orientation and only allow for competitive growth with respect to the in-plane alignment. Our results show unambiguously a biaxially textured Cr (110) film that possesses a double in-plane alignment, in agreement with predictions of the in-plane selection model. Thus, a long standing discrepancy in the literature is resolved, paving the way towards more accurate theoretical descriptions and hence knowledge-based control of microstructure evolution in biaxially textured thin films.

    Download full text (pdf)
    fulltext
  • 10.
    Gervilla Palomar, Victor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Almyras, Georgios
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Thunstrom, F.
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Dynamics of 3D-island growth on weakly-interacting substrates2019In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 488, p. 383-390Article in journal (Refereed)
    Abstract [en]

    The growth dynamics of faceted three-dimensional (3D) Ag islands on weakly-interacting substrates are investigated-using kinetic Monte Carlo (kMC) simulations and analytical modelling-with the objective of determining the critical top-layer radius R-c required to nucleate a new island layer as a function of temperature T, at a constant deposition rate. kMC shows that R-c decreases from 17.3 to 6.0 angstrom as T is increased at 25 K intervals, from 300 to 500 K. That is, a higher T promotes top-layer nucleation resulting in an increase in island height-to-radius aspect ratios. This explains experimental observations for film growth on weakly-interacting substrates, which are not consistent with classical homoepitaxial growth theory. In the latter case, higher temperatures yield lower top-layer nucleation rates and lead to a decrease in island aspect ratios. The kMC simulation results are corroborated by an analytical mean field model, in which R-c is estimated by calculating the steady-state adatom density on the island side facets and top layer as a function of T. The overall findings of this study constitute a first step toward developing rigorous theoretical models, which can be used to guide synthesis of metal nanostructures, and layers with controlled shape and morphology, on technologically important substrates, including two-dimensional crystals, for nanoelectronic and catalytic applications.

    Download full text (pdf)
    fulltext
  • 11. Order onlineBuy this publication >>
    Gervilla Palomar, Víctor
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Metal film growth on weakly-interacting substrates: Multiscale modeling2020Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Thin films are nanoscale layers of material used to functionalize surfaces or to serve as building blocks in more complex devices. In recent years, thin metal films have become vital for modern devices within, e.g., biosensing, catalysis, and nanoelectronics, whereby synthesis of metal layers with specific morphological features on two-dimensional (2D) crystals and oxides is required. However, this entails a great scientific challenge: in most of the afore-mentioned film/substrate combinations substrate and metal atoms interact weakly, causing the latter to self-assemble without control into three-dimensional (3D) clusters.

    Nowadays, a significant fraction of thin films is synthesized via condensation from the vapor phase, a far-from-equilibrium process in which film morphology is governed by the kinetic rates of atomic-scale structure-forming processes. It is, therefore, evident that knowledge-based synthesis of metal layers in high-performance devices necessitates a comprehensive understanding of the dynamic competition among these processes at the nano- and mesoscale. Such understanding is today incomplete, since experimental materials science tools are often not capable of providing nanometer and sub-nanometer insights at time scales that are relevant for thin-film synthesis. Computational approaches offer the possibility to fill the afore-mentioned gap in knowledge by allowing to explore atomistic behaviors with picosecond resolution. Hence, in the present thesis, a combination of modern computer simulation techniques is used to investigate thin metal film growth on weakly-interacting substrates from a purely atomistic point of view and to elucidate the ways by which atomic diffusion mechanisms give rise to the final film morphologies.

    In the first part of the thesis, an in-house kinetic Monte Carlo (KMC) simulation code and analytical modelling are used to investigate the early growth stages of Ag films supported on a generic weakly-interacting substrate. The results show that the weak interaction strength between film atoms and substrates leads to the formation of strongly-faceted 3D Ag islands, whose vertical growth is mediated by the temperature-dependent upward adatom diffusion across the facets. Eventually, the 3D islands impinge on each other and coalesce via surface migration of facet layers. Migration can be promoted by an increase of the deposition flux, but it can also be hindered by material agglomeration if the flux exceeds a critical threshold. These findings provide the foundation for explaining several effects observed during thin film growth on weakly-interacting substrates, including the increase of film roughness with temperature, the transition from 3D to 2D film morphology upon suppression of coalescence, and the origin of changes in thin film roughness and grain boundary number densities when varying the magnitude of vapor flux arrival rate.

    In the second part, ab initio and classical Molecular Dynamics simulations are used to investigate the diffusion dynamics of several transition metal adatoms (Ag, Au, Cu, Pd, Pt and Ru) and multi-atomic clusters (Ag, Au, Cu and Pd) on single layer graphene at room temperature (300K). The simulated diffusion trajectories reveal that diffusing adspecies experiencing a deep (hundreds of meV) potential energy landscape (PEL) on the substrate surface follow random walks; whilst those with a weak interaction with the substrate (PEL depth of a few meV) follow a superdiffusive motion pattern known as Lévy walk. This type of anomalous movement— also observed in other phenomena in physical, biological, and social systems—manifests itself as a continuous atomic motion with occasional flights over distances covering multiple adsorption sites. The fact that adspecies follow a distinctly different type of motion than what is observed in classical homoepitaxial growth theory implies that energy barriers readily available from static (0K) calculations may not be able to provide a physical accurate description of surface diffusion of metal adspecies on 2D crystals. As such, anomalous diffusion is a potentially important aspect to be considered when modelling growth of metal films and nanostructures on 2D materials.

    The results and insights generated in the present thesis provide key knowledge for controlled synthesis of films and nanostructures with tailored properties. This, in turn, is relevant for developing high-performance energy-saving windows, improving the turnover frequency of catalytic reactions, and integrating 2D materials into novel nanoelectronic devices. Moreover, the techniques developed and employed herein contribute toward bringing modern computational tools closer to the field of thin film growth.

    List of papers
    1. Formation and morphological evolution of self-similar 3D nanostructures on weakly interacting substrates
    Open this publication in new window or tab >>Formation and morphological evolution of self-similar 3D nanostructures on weakly interacting substrates
    Show others...
    2018 (English)In: Physical Review Materials, E-ISSN 2475-9953, Vol. 2, no 6, article id 063401Article in journal (Refereed) Published
    Abstract [en]

    Vapor condensation on weakly interacting substrates leads to the formation of three-dimensional (3D) nanoscale islands (i.e., nanostructures). While it is widely accepted that this process is driven by minimization of the total film/substrate surface and interface energy, current film-growth theory cannot fully explain the atomic-scale mechanisms and pathways by which 3D island formation and morphological evolution occurs. Here, we use kinetic Monte Carlo simulations to describe the dynamic evolution of single-island shapes during deposition of Ag on weakly interacting substrates. The results show that 3D island shapes evolve in a self-similar manner, exhibiting a constant height-to-radius aspect ratio, which is a function of the growth temperature. Furthermore, our results reveal the following chain of atomic-scale events that lead to compact 3D island shapes: 3D nuclei are first formed due to facile adatom ascent at single-layer island steps, followed by the development of sidewall facets bounding the islands, which in turn facilitates upward diffusion from the base to the top of the islands. The limiting atomic process which determines the island height, for a given number of deposited atoms, is the temperature-dependent rate at which adatoms cross from sidewall facets to the island top. The overall findings of this study provide insights into the directed growth of metal nanostructures with controlled shapes on weakly interacting substrates, including two-dimensional crystals, for use in catalytic and nanoelectronic applications.

    Place, publisher, year, edition, pages
    AMER PHYSICAL SOC, 2018
    National Category
    Condensed Matter Physics
    Identifiers
    urn:nbn:se:liu:diva-149345 (URN)10.1103/PhysRevMaterials.2.063401 (DOI)000435337300001 ()
    Note

    Funding Agencies|Linkoping University [Dnr-LiU-2015-01510]; Swedish Research Council [VR-2011-5312, VR-2015-04630, VR2014-5790]; Knut and AliceWallenberg Foundation [KAW2011-0094]

    Available from: 2018-07-02 Created: 2018-07-02 Last updated: 2020-12-15
    2. Dynamics of 3D-island growth on weakly-interacting substrates
    Open this publication in new window or tab >>Dynamics of 3D-island growth on weakly-interacting substrates
    Show others...
    2019 (English)In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 488, p. 383-390Article in journal (Refereed) Published
    Abstract [en]

    The growth dynamics of faceted three-dimensional (3D) Ag islands on weakly-interacting substrates are investigated-using kinetic Monte Carlo (kMC) simulations and analytical modelling-with the objective of determining the critical top-layer radius R-c required to nucleate a new island layer as a function of temperature T, at a constant deposition rate. kMC shows that R-c decreases from 17.3 to 6.0 angstrom as T is increased at 25 K intervals, from 300 to 500 K. That is, a higher T promotes top-layer nucleation resulting in an increase in island height-to-radius aspect ratios. This explains experimental observations for film growth on weakly-interacting substrates, which are not consistent with classical homoepitaxial growth theory. In the latter case, higher temperatures yield lower top-layer nucleation rates and lead to a decrease in island aspect ratios. The kMC simulation results are corroborated by an analytical mean field model, in which R-c is estimated by calculating the steady-state adatom density on the island side facets and top layer as a function of T. The overall findings of this study constitute a first step toward developing rigorous theoretical models, which can be used to guide synthesis of metal nanostructures, and layers with controlled shape and morphology, on technologically important substrates, including two-dimensional crystals, for nanoelectronic and catalytic applications.

    Place, publisher, year, edition, pages
    ELSEVIER SCIENCE BV, 2019
    Keywords
    Growth; Kinetic Monte Carlo; Nanostructure; Diffusion; Nucleation
    National Category
    Condensed Matter Physics
    Identifiers
    urn:nbn:se:liu:diva-158910 (URN)10.1016/j.apsusc.2019.05.208 (DOI)000472476200042 ()
    Note

    Funding Agencies|Linkoping University ("LiU Career Contract") [Dnr-LiU-2015-01510]; Swedish Research Council [VR-2015-04630, VR2014-5790]; Knut and Alice Wallenberg Foundation [KAW 2011-0094]

    Available from: 2019-07-20 Created: 2019-07-20 Last updated: 2021-05-22
    3. Coalescence dynamics of 3D islands on weakly-interacting substrates
    Open this publication in new window or tab >>Coalescence dynamics of 3D islands on weakly-interacting substrates
    2020 (English)In: Scientific Reports, E-ISSN 2045-2322, Vol. 10, no 1, article id 2031Article in journal (Refereed) Published
    Abstract [en]

    We use kinetic Monte Carlo simulations and analytical modelling to study coalescence of three-dimensional (3D) nanoscale faceted silver island pairs on weakly-interacting fcc(111) substrates, with and without concurrent supply of mobile adatoms from the vapor phase. Our simulations show that for vapor flux arrival rates F < 1 monolayer/second (ML/s) coalescence manifests itself by one of the islands absorbing the other via sidewall facet migration. This process is mediated by nucleation and growth of two-dimensional (2D) layers on the island facets, while the supply of mobile atoms increases the nucleation probability and shortens the time required for coalescence completion. When F is increased above 1 ML/s, coalescence is predominantly governed by deposition from the vapor phase and the island pair reaches a compact shape via agglomeration. The crucial role of facets for the coalescence dynamics is further supported by a mean-field thermodynamic description of the nucleation energetics and kinetics. Our findings explain experimental results which show that two-dimensional film growth morphology on weakly-interacting substrates is promoted when the rate of island coalescence is suppressed. The present study also highlights that deviations of experimentally reported film morphological evolutions in weakly-interacting film/substrate systems from predictions based on the sintering and particle growth theories may be understood in light of the effect of deposition flux atoms on the energetics and kinetics of facet-layer nucleation during coalescence.

    Place, publisher, year, edition, pages
    Taylor & Francis, 2020
    National Category
    Nano Technology
    Identifiers
    urn:nbn:se:liu:diva-163690 (URN)10.1038/s41598-020-58712-1 (DOI)000540299500001 ()32029784 (PubMedID)2-s2.0-85079033789 (Scopus ID)
    Note

    Funding agencies: Linkoping University ("LiU Career Contract") [Dnr-LiU-2015-01510]; Swedish research councilSwedish Research Council [VR-2015-04630]; Olle Engkvist foundation [SOEB 190-312]; Aforsk foundation [AF 19-137]; Linkoping University

    Available from: 2020-02-18 Created: 2020-02-18 Last updated: 2022-09-15Bibliographically approved
    4. Anomalous versus Normal Room-Temperature Diffusion of Metal Adatoms on Graphene
    Open this publication in new window or tab >>Anomalous versus Normal Room-Temperature Diffusion of Metal Adatoms on Graphene
    2020 (English)In: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, The Journal of Physical Chemistry Letters, Vol. 11, no 21, p. 8930-8936Article in journal (Refereed) Published
    Abstract [en]

    Fabrication of high-performance heterostructure devices requires fundamental understanding of the diffusion dynamics of metal species on 2D materials. Here, we investigate the room-temperature diffusion of Ag, Au, Cu, Pd, Pt, and Ru adatoms on graphene using ab initio and classical molecular dynamics simulations. We find that Ag, Au, Cu, and Pd follow Lévy walks, in which adatoms move continuously within ∼1–4 nm2 domains during ∼0.04 ns timeframes, and they occasionally perform ∼2–4 nm flights across multiple surface adsorption sites. This anomalous diffusion pattern is associated with a flat (<50 meV) potential energy landscape (PEL), which renders surface vibrations important for adatom migration. The latter is not the case for Pt and Ru, which encounter a significantly rougher PEL (>100 meV) and, hence, migrate via conventional random walks. Thus, adatom anomalous diffusion is a potentially important aspect for modeling growth of metal films and nanostructures on 2D materials.

    Place, publisher, year, edition, pages
    Washington, DC, United States: American Chemical Society, 2020
    National Category
    Physical Chemistry
    Identifiers
    urn:nbn:se:liu:diva-171416 (URN)10.1021/acs.jpclett.0c02375 (DOI)000589920000001 ()32986445 (PubMedID)2-s2.0-85095799468 (Scopus ID)
    Note

    Funding agencies: Swedish research council (contract VR-2015-04630), ÅForsk foundation (contract ÅF 19-137), Olle Engkvist foundation (contract SOEB 190-312), Swedish Research Council through Grant Agreement No. VR-2015-04630

    Available from: 2020-11-16 Created: 2020-11-16 Last updated: 2021-01-31Bibliographically approved
    Download full text (pdf)
    fulltext
    Download (png)
    presentationsbild
  • 12.
    Gervilla Palomar, Víctor
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Metal film growth on weakly-interacting substrates: Stochastic simulations and analytical modelling2019Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Thin films are nanoscale layers of material, with exotic properties useful in diverse areas, ranging from biomedicine to nanoelectronics and surface protection. Film properties are not only determined by their chemical composition, but also by their microstructure and roughness, features that depend crucially on the growth process due to the inherent out-of equilibrium nature of the film deposition techniques. This fact suggest that it is possible to control film growth, and in turn film properties, in a knowledge-based manner by tuning the deposition conditions. This requires a good understanding of the elementary film-forming processes, and the way by which they are affected by atomic-scale kinetics. The kinetic Monte Carlo (kMC) method is a simulation tool that can model film evolution over extended time scales, of the order of microseconds, and beyond, and thus constitutes a powerful complement to experimental research aiming to obtain an universal understanding of thin film formation and morphological evolution.

    In this work, kMC simulations, coupled with analytical modelling, are used to investigate the early stages of formation of metal films and nanostructures supported on weakly-interacting substrates. This starts with the formation and growth of faceted 3D islands, that relies first on facile adatom ascent at single-layer island steps and subsequently on facile adatom upward diffusion from the base to the top of the island across its facets. Interlayer mass transport is limited by the rate at which adatoms cross from the sidewall facets to the island top, a process that determines the final height of the islands and leads non-trivial growth dynamics, as increasing temperatures favour 3D growth as a result of the upward transport. These findings explain the high roughness observed experimentally in metallic films grown on weakly-interacting substrates at high temperatures.

    The second part of the study focus on the next logical step of film formation, when 3D islands come into contact and fuse into a single one, or coalesce. The research reveals that the faceted island structure governs the macroscopic process of coalescence as well as its dynamics, and that morphological changes depend on 2D nucleation on the II facets. In addition, deposition during coalescence is found to accelerate the process and modify its dynamics, by contributing to the nucleation of new facets.

    This study provides useful knowledge concerning metal growth on weakly-interacting substrates, and, in particular, identifies the key atomistic processes controlling the early stages of formation of thin films, which can be used to tailor deposition conditions in order to achieve films with unique properties and applications.

    List of papers
    1. Formation and morphological evolution of self-similar 3D nanostructures on weakly interacting substrates
    Open this publication in new window or tab >>Formation and morphological evolution of self-similar 3D nanostructures on weakly interacting substrates
    Show others...
    2018 (English)In: Physical Review Materials, E-ISSN 2475-9953, Vol. 2, no 6, article id 063401Article in journal (Refereed) Published
    Abstract [en]

    Vapor condensation on weakly interacting substrates leads to the formation of three-dimensional (3D) nanoscale islands (i.e., nanostructures). While it is widely accepted that this process is driven by minimization of the total film/substrate surface and interface energy, current film-growth theory cannot fully explain the atomic-scale mechanisms and pathways by which 3D island formation and morphological evolution occurs. Here, we use kinetic Monte Carlo simulations to describe the dynamic evolution of single-island shapes during deposition of Ag on weakly interacting substrates. The results show that 3D island shapes evolve in a self-similar manner, exhibiting a constant height-to-radius aspect ratio, which is a function of the growth temperature. Furthermore, our results reveal the following chain of atomic-scale events that lead to compact 3D island shapes: 3D nuclei are first formed due to facile adatom ascent at single-layer island steps, followed by the development of sidewall facets bounding the islands, which in turn facilitates upward diffusion from the base to the top of the islands. The limiting atomic process which determines the island height, for a given number of deposited atoms, is the temperature-dependent rate at which adatoms cross from sidewall facets to the island top. The overall findings of this study provide insights into the directed growth of metal nanostructures with controlled shapes on weakly interacting substrates, including two-dimensional crystals, for use in catalytic and nanoelectronic applications.

    Place, publisher, year, edition, pages
    AMER PHYSICAL SOC, 2018
    National Category
    Condensed Matter Physics
    Identifiers
    urn:nbn:se:liu:diva-149345 (URN)10.1103/PhysRevMaterials.2.063401 (DOI)000435337300001 ()
    Note

    Funding Agencies|Linkoping University [Dnr-LiU-2015-01510]; Swedish Research Council [VR-2011-5312, VR-2015-04630, VR2014-5790]; Knut and AliceWallenberg Foundation [KAW2011-0094]

    Available from: 2018-07-02 Created: 2018-07-02 Last updated: 2020-12-15
    2. Dynamics of 3D-island growth on weakly-interacting substrates
    Open this publication in new window or tab >>Dynamics of 3D-island growth on weakly-interacting substrates
    Show others...
    2019 (English)In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 488, p. 383-390Article in journal (Refereed) Published
    Abstract [en]

    The growth dynamics of faceted three-dimensional (3D) Ag islands on weakly-interacting substrates are investigated-using kinetic Monte Carlo (kMC) simulations and analytical modelling-with the objective of determining the critical top-layer radius R-c required to nucleate a new island layer as a function of temperature T, at a constant deposition rate. kMC shows that R-c decreases from 17.3 to 6.0 angstrom as T is increased at 25 K intervals, from 300 to 500 K. That is, a higher T promotes top-layer nucleation resulting in an increase in island height-to-radius aspect ratios. This explains experimental observations for film growth on weakly-interacting substrates, which are not consistent with classical homoepitaxial growth theory. In the latter case, higher temperatures yield lower top-layer nucleation rates and lead to a decrease in island aspect ratios. The kMC simulation results are corroborated by an analytical mean field model, in which R-c is estimated by calculating the steady-state adatom density on the island side facets and top layer as a function of T. The overall findings of this study constitute a first step toward developing rigorous theoretical models, which can be used to guide synthesis of metal nanostructures, and layers with controlled shape and morphology, on technologically important substrates, including two-dimensional crystals, for nanoelectronic and catalytic applications.

    Place, publisher, year, edition, pages
    ELSEVIER SCIENCE BV, 2019
    Keywords
    Growth; Kinetic Monte Carlo; Nanostructure; Diffusion; Nucleation
    National Category
    Condensed Matter Physics
    Identifiers
    urn:nbn:se:liu:diva-158910 (URN)10.1016/j.apsusc.2019.05.208 (DOI)000472476200042 ()
    Note

    Funding Agencies|Linkoping University ("LiU Career Contract") [Dnr-LiU-2015-01510]; Swedish Research Council [VR-2015-04630, VR2014-5790]; Knut and Alice Wallenberg Foundation [KAW 2011-0094]

    Available from: 2019-07-20 Created: 2019-07-20 Last updated: 2021-05-22
    3. Coalescence dynamics of 3D islands on weakly-interacting substrates
    Open this publication in new window or tab >>Coalescence dynamics of 3D islands on weakly-interacting substrates
    2020 (English)In: Scientific Reports, E-ISSN 2045-2322, Vol. 10, no 1, article id 2031Article in journal (Refereed) Published
    Abstract [en]

    We use kinetic Monte Carlo simulations and analytical modelling to study coalescence of three-dimensional (3D) nanoscale faceted silver island pairs on weakly-interacting fcc(111) substrates, with and without concurrent supply of mobile adatoms from the vapor phase. Our simulations show that for vapor flux arrival rates F < 1 monolayer/second (ML/s) coalescence manifests itself by one of the islands absorbing the other via sidewall facet migration. This process is mediated by nucleation and growth of two-dimensional (2D) layers on the island facets, while the supply of mobile atoms increases the nucleation probability and shortens the time required for coalescence completion. When F is increased above 1 ML/s, coalescence is predominantly governed by deposition from the vapor phase and the island pair reaches a compact shape via agglomeration. The crucial role of facets for the coalescence dynamics is further supported by a mean-field thermodynamic description of the nucleation energetics and kinetics. Our findings explain experimental results which show that two-dimensional film growth morphology on weakly-interacting substrates is promoted when the rate of island coalescence is suppressed. The present study also highlights that deviations of experimentally reported film morphological evolutions in weakly-interacting film/substrate systems from predictions based on the sintering and particle growth theories may be understood in light of the effect of deposition flux atoms on the energetics and kinetics of facet-layer nucleation during coalescence.

    Place, publisher, year, edition, pages
    Taylor & Francis, 2020
    National Category
    Nano Technology
    Identifiers
    urn:nbn:se:liu:diva-163690 (URN)10.1038/s41598-020-58712-1 (DOI)000540299500001 ()32029784 (PubMedID)2-s2.0-85079033789 (Scopus ID)
    Note

    Funding agencies: Linkoping University ("LiU Career Contract") [Dnr-LiU-2015-01510]; Swedish research councilSwedish Research Council [VR-2015-04630]; Olle Engkvist foundation [SOEB 190-312]; Aforsk foundation [AF 19-137]; Linkoping University

    Available from: 2020-02-18 Created: 2020-02-18 Last updated: 2022-09-15Bibliographically approved
    Download full text (pdf)
    Metal film growth on weakly-interacting substrates: Stochastic simulations and analytical modelling
    Download (png)
    presentationsbild
  • 13.
    Gervilla, Víctor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Almyras, Georgios
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Lü, Bo
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Coalescence dynamics of 3D islands on weakly-interacting substrates2020In: Scientific Reports, E-ISSN 2045-2322, Vol. 10, no 1, article id 2031Article in journal (Refereed)
    Abstract [en]

    We use kinetic Monte Carlo simulations and analytical modelling to study coalescence of three-dimensional (3D) nanoscale faceted silver island pairs on weakly-interacting fcc(111) substrates, with and without concurrent supply of mobile adatoms from the vapor phase. Our simulations show that for vapor flux arrival rates F < 1 monolayer/second (ML/s) coalescence manifests itself by one of the islands absorbing the other via sidewall facet migration. This process is mediated by nucleation and growth of two-dimensional (2D) layers on the island facets, while the supply of mobile atoms increases the nucleation probability and shortens the time required for coalescence completion. When F is increased above 1 ML/s, coalescence is predominantly governed by deposition from the vapor phase and the island pair reaches a compact shape via agglomeration. The crucial role of facets for the coalescence dynamics is further supported by a mean-field thermodynamic description of the nucleation energetics and kinetics. Our findings explain experimental results which show that two-dimensional film growth morphology on weakly-interacting substrates is promoted when the rate of island coalescence is suppressed. The present study also highlights that deviations of experimentally reported film morphological evolutions in weakly-interacting film/substrate systems from predictions based on the sintering and particle growth theories may be understood in light of the effect of deposition flux atoms on the energetics and kinetics of facet-layer nucleation during coalescence.

    Download full text (pdf)
    fulltext
  • 14.
    Gervilla, Víctor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Zarshenas, Mohammad
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Sangiovanni, Davide Giuseppe
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Anomalous versus Normal Room-Temperature Diffusion of Metal Adatoms on Graphene2020In: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, The Journal of Physical Chemistry Letters, Vol. 11, no 21, p. 8930-8936Article in journal (Refereed)
    Abstract [en]

    Fabrication of high-performance heterostructure devices requires fundamental understanding of the diffusion dynamics of metal species on 2D materials. Here, we investigate the room-temperature diffusion of Ag, Au, Cu, Pd, Pt, and Ru adatoms on graphene using ab initio and classical molecular dynamics simulations. We find that Ag, Au, Cu, and Pd follow Lévy walks, in which adatoms move continuously within ∼1–4 nm2 domains during ∼0.04 ns timeframes, and they occasionally perform ∼2–4 nm flights across multiple surface adsorption sites. This anomalous diffusion pattern is associated with a flat (<50 meV) potential energy landscape (PEL), which renders surface vibrations important for adatom migration. The latter is not the case for Pt and Ru, which encounter a significantly rougher PEL (>100 meV) and, hence, migrate via conventional random walks. Thus, adatom anomalous diffusion is a potentially important aspect for modeling growth of metal films and nanostructures on 2D materials.

    Download full text (pdf)
    fulltext
  • 15. Order onlineBuy this publication >>
    Jamnig, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering. Institut Pprime, Département Physique et Mécanique des Matériaux, Université de Poitiers, Poitiers, France.
    Thin metal films on weakly-interacting substrates: Nanoscale growth dynamics, stress generation, and morphology manipulation2020Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Vapor-based growth of thin metal films with controlled morphology on weakly-interacting substrates (WIS), including oxides and van der Waals materials, is essential for the fabrication of multifunctional metal contacts in a wide array of optoelectronic devices. Achieving this entails a great challenge, since weak film/substrate interactions yield a pronounced and uncontrolled 3D morphology. Moreover, the far-from-equilibrium nature of vapor-based film growth often leads to generation of mechanical stress, which may further compromise device reliability and functionality. The objectives of this thesis are related to metal film growth on WIS and seek to: (i) contribute to the understanding of atomic-scale processes that control film morphological evolution; (ii) elucidate the dynamic competition between nanoscale processes that govern film stress generation and evolution; and (iii) develop methodologies for manipulating and controlling nanoscale film morphology between 2D and 3D. Investigations focus on magnetron sputter-deposited Ag and Cu films on SiO2 and amorphous carbon (a-C) substrates. Research is conducted by strategically combining of in situ and real-time film growth monitoring, ex situ chemical and (micro)-structural analysis, optical modelling, and deterministic growth simulations.

    In the first part, the scaling behavior of characteristic morphological transition thicknesses (i.e., percolation and continuous film formation thickness) during growth of Ag and Cu films on a-C are established as function of deposition rate and temperature. These data are interpreted using a theoretical framework based on the droplet growth theory and the kinetic freezing model for island coalescence, from which the diffusion rates of film forming species during Ag and Cu growth are estimated. By combining experimental data with ab initio molecular dynamics simulations, diffusion of multiatomic clusters, rather than monomers, is identified as the rate-limiting structure-forming process.

    In the second part, the effect of minority metallic or gaseous species (Cu, N2, O2) on Ag film morphological evolution on SiO2 is studied. By employing in situ spectroscopic ellipsometry, it is found that addition of minority species at the film growth front promotes 2D morphology, but also yields an increased continuous-layer resistivity. Ex situ analyses show that 2D morphology is favored because minority species hinder the rate of coalescence completion. Hence, a novel growth manipulation strategy is compiled in which minority species are deployed with high temporal precision to selectively target specific film growth stages and achieve 2D morphology, while retaining opto-electronic properties of pure Ag films.

    In the third part, the evolution of stress during Ag and Cu film growth on a-C and its dependence on growth kinetics (as determined by deposition rate, substrate temperature) is systematically investigated. A general trend toward smaller compressive stress magnitudes with increasing temperature/deposition rate is found, related to increasing grain size/decreasing adatom diffusion length. Exception to this trend is found for Cu films, in which oxygen incorporation from the residual growth atmosphere at low deposition rates inhibits adatom diffusivity and decreases the magnitude of compressive stress. The effect of N2 on stress type and magnitude in Ag films is also studied. While Ag grown in N2-free atmosphere exhibits a typical compressive-tensile-compressive stress evolution as function of thickness, addition of a few percent of N2 yields to a stress turnaround from compressive to tensile stress after film continuity which is attributed to giant grain growth and film roughening.

    The overall results of the thesis provide the foundation to: (i) determine diffusion rates over a wide range of WIS film/substrates systems; (ii) design non-invasive strategies for multifunctional contacts in optoelectronic devices; (iii) complete important missing pieces in the fundamental understanding of stress, which can be used to expand theoretical descriptions for predicting and tuning stress magnitude.

    List of papers
    1. Atomic-scale diffusion rates during growth of thin metal films on weakly-interacting substrates
    Open this publication in new window or tab >>Atomic-scale diffusion rates during growth of thin metal films on weakly-interacting substrates
    2019 (English)In: Scientific Reports, E-ISSN 2045-2322, Vol. 9, article id 6640Article in journal (Refereed) Published
    Abstract [en]

    We use a combined experimental and theoretical approach to study the rates of surface diffusion processes that govern early stages of thin Ag and Cu film morphological evolution on weakly-interacting amorphous carbon substrates. Films are deposited by magnetron sputtering, at temperatures T-S between 298 and 413 K, and vapor arrival rates F in the range 0.08 to 5.38 monolayers/s. By employing in situ and real-time sheet-resistance and wafer-curvature measurements, we determine the nominal film thickness Theta at percolation (Theta(perc)) and continuous film formation (Theta(cont)) transition. Subsequently, we use the scaling behavior of Theta(perc) and Theta(cont) as a function of F and T-s, to estimate, experimentally, the temperature-dependent diffusivity on the substrate surface, from which we calculate Ag and Cu surface migration energy barriers E-D(exp) and attempt frequencies nu(exp)(0). By critically comparing E-D(exp) and nu(exp)(0) with literature data, as well as with results from our ab initio molecular dynamics simulations for single Ag and Cu adatom diffusion on graphite surfaces, we suggest that: (i) E-D(exp) and nu(exp)(0) correspond to diffusion of multiatomic clusters, rather than to diffusion of monomers; and (ii) the mean size of mobile clusters during Ag growth is larger compared to that of Cu. The overall results of this work pave the way for studying growth dynamics in a wide range of technologically-relevant weakly-interacting film/substrate systems-including metals on 2D materials and oxides-which are building blocks in next-generation nanoelectronic, optoelectronic, and catalytic devices.

    Place, publisher, year, edition, pages
    Nature Publishing Group, 2019
    National Category
    Condensed Matter Physics
    Identifiers
    urn:nbn:se:liu:diva-158369 (URN)10.1038/s41598-019-43107-8 (DOI)000466127100065 ()31036908 (PubMedID)2-s2.0-85065068804 (Scopus ID)
    Note

    Funding Agencies|French Government program "Investissements dAvenir" (LABEX INTERACTIFS) [ANR-11-LABX-0017-01]; Linkoping University ("LiU Career Contract") [Dnr-LiU-2015-01510]; Swedish research council [VR-2015-04630]; Olle Engkvist foundation [SOEB 190-312]; Olle Engkvist Foundation

    Available from: 2019-07-02 Created: 2019-07-02 Last updated: 2022-09-15Bibliographically approved
    2. The effect of kinetics on intrinsic stress generation and evolution in sputter-deposited films at conditions of high atomic mobility
    Open this publication in new window or tab >>The effect of kinetics on intrinsic stress generation and evolution in sputter-deposited films at conditions of high atomic mobility
    2020 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 127, no 4, article id 045302Article in journal (Refereed) Published
    Abstract [en]

    Vapor-based metal film growth at conditions that promote high atomic mobility is typically accompanied by compressive stress formation after completion of island coalescence, while an apparent stress relaxation is observed upon deposition interruption. Despite numerous experimental studies confirming these trends, the way by which growth kinetics affect postcoalescence stress magnitude and evolution is not well understood, in particular, for sputter-deposited films. In this work, we study in situ and in real-time stress evolution during sputter-deposition of Ag and Cu films on amorphous carbon. In order to probe different conditions with respect to growth kinetics, we vary the deposition rate F from 0:015 to 1:27 nm/s, and the substrate temperature T-S from 298 to 413 K. We find a general trend toward smaller compressive stress magnitudes with increasing T-S for both film/substrate systems. The stress-dependence on F is more complex: (i) for Ag, smaller compressive stress is observed when increasing F; (ii) while for Cu, a nonmonotonic evolution with F is seen, with a compressive stress maximum for F = 0.102 nm/s. Studies of postdeposition stress evolution show the occurrence of a tensile rise that becomes less pronounced with increasing T-S and decreasing F, whereas a faster tensile rise is seen by increasing F and T-S. We critically discuss these results in view of ex situ obtained film morphology which show that deposition-parameter-induced changes in film grain size and surface roughness are intimately linked with the stress evolution. (c) 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

    Place, publisher, year, edition, pages
    AMER INST PHYSICS, 2020
    National Category
    Other Materials Engineering
    Identifiers
    urn:nbn:se:liu:diva-164397 (URN)10.1063/1.5130148 (DOI)000515698500037 ()
    Note

    Funding Agencies|French Government program "Investissements dAvenir" (LABEX INTERACTIFS)French National Research Agency (ANR) [ANR-11-LABX-0017-01]; Linkoping University ("LiU Career Contract) [LiU-2015-01510]; Swedish Research CouncilSwedish Research Council [VR-2015-04630]; Aforsk Foundation [AF 19-137]; Olle Engkvist Foundation [SOEB 190-312]; Wenner-Gren Foundations [UPD2018-0071, UPD2019-0007]

    Available from: 2020-03-19 Created: 2020-03-19 Last updated: 2020-08-24
    3. 3D-to-2D Morphology Manipulation of Sputter-Deposited Nanoscale Silver Films on Weakly Interacting Substrates via Selective Nitrogen Deployment for Multifunctional Metal Contacts
    Open this publication in new window or tab >>3D-to-2D Morphology Manipulation of Sputter-Deposited Nanoscale Silver Films on Weakly Interacting Substrates via Selective Nitrogen Deployment for Multifunctional Metal Contacts
    Show others...
    2020 (English)In: ACS APPLIED NANO MATERIALS, ISSN 2574-0970, Vol. 3, no 5, p. 4728-4738Article in journal (Refereed) Published
    Abstract [en]

    The ability to reverse the inherent tendency of noble metals to grow in an uncontrolled three-dimensional (3D) fashion on weakly interacting substrates, including two-dimensional (2D) materials and oxides, is essential for the fabrication of high-quality multifunctional metal contacts in key enabling devices. In this study, we show that this can be effectively achieved by deploying nitrogen (N-2) gas with high temporal precision during magnetron sputtering of nanoscale silver (Ag) islands and layers on silicon dioxide (SiO2) substrates. We employ real-time in situ film growth monitoring using spectroscopic ellipsometry, along with optical modeling in the framework of the finite-difference time-domain method, and establish that localized surface plasmon resonance (LSPR) from nanoscale Ag islands can be used to gauge the evolution of surface morphology of discontinuous layers up to a SiO2 substrate area coverage of similar to 70%. Such analysis, in combination with data on the evolution of room-temperature resistivity of electrically conductive layers, reveals that presence of N-2 in the sputtering gas atmosphere throughout all film-formation stages: (i) promotes 2D growth and smooth film surfaces and (ii) leads to an increase of the continuous-layer electrical resistivity by similar to 30% compared to Ag films grown in a pure argon (Ar) ambient atmosphere. Detailed ex situ nanoscale structural analyses suggest that N-2 favors 2D morphology by suppressing island coalescence rates during initial growth stages, while it causes interruption of local epitaxial growth on Ag crystals. Using these insights, we deposit Ag layers by deploying N-2 selectively, either during the early precoalescence growth stages or after coalescence completion. We show that early N-2 deployment leads to 2D morphology without affecting the Ag-layer resistivity, while postcoalescence introduction of N-2 in the gas atmosphere further promotes formation of three-dimensional (3D) nanostructures and roughness at the film growth front. In a broader context this study generates knowledge that is relevant for the development of (i) single-step growth manipulation strategies based on selective deployment of surfactant species and (ii) real-time methodologies for tracking film and nanostructure morphological evolution using LSPR.

    Place, publisher, year, edition, pages
    AMER CHEMICAL SOC, 2020
    Keywords
    silver; nitrogen; thin film; growth manipulation; FDTD calculations; in situ growth monitoring
    National Category
    Other Materials Engineering
    Identifiers
    urn:nbn:se:liu:diva-166852 (URN)10.1021/acsanm.0c00736 (DOI)000537534900076 ()
    Note

    Funding Agencies|French Government program "Investissements dAvenir" (LABEX INTERACTIFS)French National Research Agency (ANR) [ANR-11-LABX-0017-01]; Linkoping University [Dnr-LiU-2015-01510]; Swedish Research CouncilSwedish Research Council [VR-2015-04630]; AForsk foundation [AF 19-137, AF 19-746]; Olle Engkvist Foundation [SOEB 190-312]; Wenner-Gren Foundation [UPD2018-0071, UPD2019-0007]; Slovenian Research AgencySlovenian Research Agency - Slovenia [BI-US/18-20-08]; project "INNOVATION-EL" - Operational Program "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) [MIS 5002772]; European Union (European Regional Development Fund)European Union (EU)

    Available from: 2020-06-22 Created: 2020-06-22 Last updated: 2021-12-28
    4. Manipulation of thin silver film growth on weakly interacting silicon dioxide substrates using oxygen as a surfactant
    Open this publication in new window or tab >>Manipulation of thin silver film growth on weakly interacting silicon dioxide substrates using oxygen as a surfactant
    Show others...
    2020 (English)In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 38, no 4, article id 043406Article in journal (Refereed) Published
    Abstract [en]

    The authors study the morphological evolution of magnetron-sputtered thin silver (Ag) films that are deposited on weakly interacting silicon dioxide (SiO2) substrates in an oxygen-containing (O-2) gas atmosphere. In situ and real-time monitoring of electrically conductive layers, along with ex situ microstructural analyses, shows that the presence of O-2, throughout all film-formation stages, leads to a more pronounced two-dimensional (2D) morphology, smoother film surfaces, and larger continuous-layer electrical resistivities, as compared to Ag films grown in pure argon (Ar) ambient. In addition, the authors data demonstrate that 2D morphology can be promoted, without compromising the Ag-layer electrical conductivity, if O-2 is deployed with high temporal precision to target film formation stages before the formation of a percolated layer. Detailed real-space imaging of discontinuous films, augmented by in situ growth monitoring data, suggests that O-2 favors 2D morphology by affecting the kinetics of initial film-formation stages and most notably by decreasing the rate of island coalescence completion. Furthermore, compositional and bonding analyses show that O-2 does not change the chemical nature of the Ag layers and no atomic oxygen is detected in the films, i.e., O-2 acts as a surfactant. The overall results of this study are relevant for developing noninvasive surfactant-based strategies for manipulating noble-metal-layer growth on technologically relevant weakly interacting substrates, including graphene and other 2D crystals.

    Place, publisher, year, edition, pages
    A V S AMER INST PHYSICS, 2020
    National Category
    Inorganic Chemistry
    Identifiers
    urn:nbn:se:liu:diva-167283 (URN)10.1116/6.0000244 (DOI)000539679500001 ()
    Note

    Funding Agencies|Linkoping University ("LiU Career Contract) [Dnr-LiU-2015-01510]; Swedish Research CouncilSwedish Research Council [VR-2015-04630]; Olle Engkvist Foundation [SOEB 190-312]; Wenner-Gren Foundations [UPD2018-0071, UPD2019-0007]; French Government Program "Investissements dAvenir" (LABEX INTERACTIFS)French National Research Agency (ANR) [ANR-11-LABX-0017-01]; Aforsk Foundation; European Consortium of Innovative Universities (ECIU)

    Available from: 2020-07-03 Created: 2020-07-03 Last updated: 2020-08-24
    5. On the effect of copper as wetting agent during growth of thin silver films on silicon dioxide substrates
    Open this publication in new window or tab >>On the effect of copper as wetting agent during growth of thin silver films on silicon dioxide substrates
    2021 (English)In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 538, article id 148056Article in journal (Refereed) Published
    Abstract [en]

    We study the effect of Cu incorporation on the morphological evolution and the optoelectronic properties of thin Ag films deposited by magnetron sputtering on weakly-interacting SiO2 substrates. In situ and real time spectroscopic ellipsometry data show that by adding up to 4at.% Cu throughout the entire film deposition process, wetting of the substrate by the metal layer is promoted, as evidenced by a decrease of the thickness at which the film becomes continuous from 19.5nm (pure Ag) to 15nm (Ag96Cu4). The in situ data are consistent with ex situ x-ray reflectometry analyses which show that Cu-containing films exhibit a root mean square roughness of 1.3nm compared to the value 1.8nm for pure Ag films, i.e., Cu leads to smoother film surfaces. These morphological changes are coupled with an increase in continuous-layer electrical resistivity from 1.0×10-5Ωcm (Ag) to 1.25×10-5Ωcm (Ag96Cu4). Scanning electron microscopic studies of discontinuous layers reveal that the presence of Cu at the film growth front promotes smooth surfaces (as compared to pure Ag films) by hindering the rate of island coalescence. To further understand the effect of Cu on film growth and electrical properties, in a second set of experiments, we deploy Cu with high temporal precision to target specific film-formation stages. The results show that longer presence of Cu in the vapor flux and the film growth front promote flat morphology. However, both a flat surface and a continuous-layer electrical resistivity that is equal to that of pure Ag films can only be achieved when Cu is deployed during the first 2.4nm of film deposition, during which morphological evolution is, primarily, governed by island coalescence. Our overall results highlight potential pathways for fabricating high-quality multifunctional metal contacts in a wide range of optoelectronic devices based on weakly-interacting oxides and van der Waals materials.

    Keywords
    Silver, Thin films, Weakly-interacting substrates, Growth manipulation, growth monitoring, Island coalescence
    National Category
    Materials Chemistry
    Identifiers
    urn:nbn:se:liu:diva-170316 (URN)10.1016/j.apsusc.2020.148056 (DOI)000595330200001 ()
    Note

    Funding agencies: The French Government program "Investissements d’Aveni"r (LABEX INTERACTIFS, reference ANR-11-LABX-0017-01), Linköping University ("LiU Career Contract, Dnr-LiU-2015-01510, 2015-2020"), The Swedish research council (contract VR-2015-04630), The ÅForsk foundation (contracts ÅF 19-137 and ÅF 19-746), The Olle Engkvist foundation (contract SOEB 190-312), The Wenner-Gren foundations (contracts UPD2018-0071 and UPD2019-0007)

    Available from: 2020-10-09 Created: 2020-10-09 Last updated: 2021-01-07
    Download full text (pdf)
    fulltext
    Download (png)
    presentationsbild
  • 16.
    Jamnig, Andreas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering. Univ Poitiers, France.
    Pliatsikas, Nikolaos
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering. Aristotle Univ Thessaloniki, Greece.
    Abadias, Gregory
    Univ Poitiers, France.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering. Univ Helsinki, Finland.
    Manipulation of thin metal film morphology on weakly interacting substrates via selective deployment of alloying species2022In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 40, no 3, article id 033407Article in journal (Refereed)
    Abstract [en]

    We demonstrate a versatile concept for manipulating morphology of thin (& LE;25 nm) noble-metal films on weakly interacting substrates using growth of Ag on SiO2 as a model system. The concept entails deployment of minority metallic (Cu, Au, Al, Ti, Cr, and Mo) alloying species at the Ag-layer growth front. Data from in situ and real-time monitoring of the deposition process show that all alloying agents-when deployed together with Ag vapor throughout the entire film deposition-favor two-dimensional (2D) growth morphology as compared to pure Ag film growth. This is manifested by an increase in the substrate area coverage for a given amount of deposited material in discontinuous layers and a decrease of the thickness at which a continuous layer is formed, though at the expense of a larger electrical resistivity. Based on ex situ microstructural analyses, we conclude that 2D morphological evolution under the presence of alloying species is predominantly caused by a decrease of the rate of island coalescence completion during the initial film-formation stages. Guided by this realization, alloying species are released with high temporal precision to selectively target growth stages before and after coalescence completion. Pre-coalescence deployment of all alloying agents yields a more pronounced 2D growth morphology, which for the case of Cu, Al, and Au is achieved without compromising the Ag-layer electrical conductivity. A more complex behavior is observed when alloying atoms are deposited during the post-coalescence growth stages: Cu, Au, Al, and Cr favor 2D morphology, while Ti and Mo yield a more pronounced three-dimensional morphological evolution. The overall results presented herein show that targeted deployment of alloying agents constitutes a generic platform for designing bespoken heterostructures between metal layers and technologically relevant weakly interacting substrates.& nbsp;Published under an exclusive license by the AVS.

  • 17.
    Jamnig, Andreas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering. Institut Pprime, Département Physique et Mécanique des Matériaux, Université de Poitiers, Poitiers Cedex, France.
    Pliatsikas, Nikolaos
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Abadias, Grégory
    Institut Pprime, Département Physique et Mécanique des Matériaux, Université de Poitiers, Poitiers Cedex, France.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    On the effect of copper as wetting agent during growth of thin silver films on silicon dioxide substrates2021In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 538, article id 148056Article in journal (Refereed)
    Abstract [en]

    We study the effect of Cu incorporation on the morphological evolution and the optoelectronic properties of thin Ag films deposited by magnetron sputtering on weakly-interacting SiO2 substrates. In situ and real time spectroscopic ellipsometry data show that by adding up to 4at.% Cu throughout the entire film deposition process, wetting of the substrate by the metal layer is promoted, as evidenced by a decrease of the thickness at which the film becomes continuous from 19.5nm (pure Ag) to 15nm (Ag96Cu4). The in situ data are consistent with ex situ x-ray reflectometry analyses which show that Cu-containing films exhibit a root mean square roughness of 1.3nm compared to the value 1.8nm for pure Ag films, i.e., Cu leads to smoother film surfaces. These morphological changes are coupled with an increase in continuous-layer electrical resistivity from 1.0×10-5Ωcm (Ag) to 1.25×10-5Ωcm (Ag96Cu4). Scanning electron microscopic studies of discontinuous layers reveal that the presence of Cu at the film growth front promotes smooth surfaces (as compared to pure Ag films) by hindering the rate of island coalescence. To further understand the effect of Cu on film growth and electrical properties, in a second set of experiments, we deploy Cu with high temporal precision to target specific film-formation stages. The results show that longer presence of Cu in the vapor flux and the film growth front promote flat morphology. However, both a flat surface and a continuous-layer electrical resistivity that is equal to that of pure Ag films can only be achieved when Cu is deployed during the first 2.4nm of film deposition, during which morphological evolution is, primarily, governed by island coalescence. Our overall results highlight potential pathways for fabricating high-quality multifunctional metal contacts in a wide range of optoelectronic devices based on weakly-interacting oxides and van der Waals materials.

    Download full text (pdf)
    fulltext
  • 18.
    Jamnig, Andreas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering. Univ Poitiers, France.
    Pliatsikas, Nikolaos
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Konpan, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Kehagias, Thomas
    Aristotle Univ Thessaloniki, Greece.
    Kotanidis, Alexios N.
    Univ Ioannina, Greece.
    Kalfagiannis, Nikolaos
    Nottingham Trent Univ, England.
    Bellas, Dimitris V
    Univ Ioannina, Greece.
    Lidorikis, Elefterios
    Univ Ioannina, Greece; Univ Res Ctr Ioannina URCI, Greece.
    Kovac, Janez
    Jozef Stefan Inst, Slovenia.
    Abadias, Gregory
    Univ Poitiers, France.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA; Natl Taiwan Univ Sci and Technol, Taiwan.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    3D-to-2D Morphology Manipulation of Sputter-Deposited Nanoscale Silver Films on Weakly Interacting Substrates via Selective Nitrogen Deployment for Multifunctional Metal Contacts2020In: ACS APPLIED NANO MATERIALS, ISSN 2574-0970, Vol. 3, no 5, p. 4728-4738Article in journal (Refereed)
    Abstract [en]

    The ability to reverse the inherent tendency of noble metals to grow in an uncontrolled three-dimensional (3D) fashion on weakly interacting substrates, including two-dimensional (2D) materials and oxides, is essential for the fabrication of high-quality multifunctional metal contacts in key enabling devices. In this study, we show that this can be effectively achieved by deploying nitrogen (N-2) gas with high temporal precision during magnetron sputtering of nanoscale silver (Ag) islands and layers on silicon dioxide (SiO2) substrates. We employ real-time in situ film growth monitoring using spectroscopic ellipsometry, along with optical modeling in the framework of the finite-difference time-domain method, and establish that localized surface plasmon resonance (LSPR) from nanoscale Ag islands can be used to gauge the evolution of surface morphology of discontinuous layers up to a SiO2 substrate area coverage of similar to 70%. Such analysis, in combination with data on the evolution of room-temperature resistivity of electrically conductive layers, reveals that presence of N-2 in the sputtering gas atmosphere throughout all film-formation stages: (i) promotes 2D growth and smooth film surfaces and (ii) leads to an increase of the continuous-layer electrical resistivity by similar to 30% compared to Ag films grown in a pure argon (Ar) ambient atmosphere. Detailed ex situ nanoscale structural analyses suggest that N-2 favors 2D morphology by suppressing island coalescence rates during initial growth stages, while it causes interruption of local epitaxial growth on Ag crystals. Using these insights, we deposit Ag layers by deploying N-2 selectively, either during the early precoalescence growth stages or after coalescence completion. We show that early N-2 deployment leads to 2D morphology without affecting the Ag-layer resistivity, while postcoalescence introduction of N-2 in the gas atmosphere further promotes formation of three-dimensional (3D) nanostructures and roughness at the film growth front. In a broader context this study generates knowledge that is relevant for the development of (i) single-step growth manipulation strategies based on selective deployment of surfactant species and (ii) real-time methodologies for tracking film and nanostructure morphological evolution using LSPR.

    Download full text (pdf)
    fulltext
  • 19.
    Jamnig, Andreas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering. Univ Poitiers, France.
    Pliatsikas, Nikolaos
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Abadias, G.
    Univ Poitiers, France.
    The effect of kinetics on intrinsic stress generation and evolution in sputter-deposited films at conditions of high atomic mobility2020In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 127, no 4, article id 045302Article in journal (Refereed)
    Abstract [en]

    Vapor-based metal film growth at conditions that promote high atomic mobility is typically accompanied by compressive stress formation after completion of island coalescence, while an apparent stress relaxation is observed upon deposition interruption. Despite numerous experimental studies confirming these trends, the way by which growth kinetics affect postcoalescence stress magnitude and evolution is not well understood, in particular, for sputter-deposited films. In this work, we study in situ and in real-time stress evolution during sputter-deposition of Ag and Cu films on amorphous carbon. In order to probe different conditions with respect to growth kinetics, we vary the deposition rate F from 0:015 to 1:27 nm/s, and the substrate temperature T-S from 298 to 413 K. We find a general trend toward smaller compressive stress magnitudes with increasing T-S for both film/substrate systems. The stress-dependence on F is more complex: (i) for Ag, smaller compressive stress is observed when increasing F; (ii) while for Cu, a nonmonotonic evolution with F is seen, with a compressive stress maximum for F = 0.102 nm/s. Studies of postdeposition stress evolution show the occurrence of a tensile rise that becomes less pronounced with increasing T-S and decreasing F, whereas a faster tensile rise is seen by increasing F and T-S. We critically discuss these results in view of ex situ obtained film morphology which show that deposition-parameter-induced changes in film grain size and surface roughness are intimately linked with the stress evolution. (c) 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

    Download full text (pdf)
    fulltext
  • 20.
    Jamnig, Andreas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering. Univ Poitiers, France.
    Sangiovanni, Davide Giuseppe
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering. Ruhr Univ Bochum, Germany.
    Abadias, G.
    Univ Poitiers, France.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Atomic-scale diffusion rates during growth of thin metal films on weakly-interacting substrates2019In: Scientific Reports, E-ISSN 2045-2322, Vol. 9, article id 6640Article in journal (Refereed)
    Abstract [en]

    We use a combined experimental and theoretical approach to study the rates of surface diffusion processes that govern early stages of thin Ag and Cu film morphological evolution on weakly-interacting amorphous carbon substrates. Films are deposited by magnetron sputtering, at temperatures T-S between 298 and 413 K, and vapor arrival rates F in the range 0.08 to 5.38 monolayers/s. By employing in situ and real-time sheet-resistance and wafer-curvature measurements, we determine the nominal film thickness Theta at percolation (Theta(perc)) and continuous film formation (Theta(cont)) transition. Subsequently, we use the scaling behavior of Theta(perc) and Theta(cont) as a function of F and T-s, to estimate, experimentally, the temperature-dependent diffusivity on the substrate surface, from which we calculate Ag and Cu surface migration energy barriers E-D(exp) and attempt frequencies nu(exp)(0). By critically comparing E-D(exp) and nu(exp)(0) with literature data, as well as with results from our ab initio molecular dynamics simulations for single Ag and Cu adatom diffusion on graphite surfaces, we suggest that: (i) E-D(exp) and nu(exp)(0) correspond to diffusion of multiatomic clusters, rather than to diffusion of monomers; and (ii) the mean size of mobile clusters during Ag growth is larger compared to that of Cu. The overall results of this work pave the way for studying growth dynamics in a wide range of technologically-relevant weakly-interacting film/substrate systems-including metals on 2D materials and oxides-which are building blocks in next-generation nanoelectronic, optoelectronic, and catalytic devices.

    Download full text (pdf)
    fulltext
  • 21.
    Konpan, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering.
    Manipulation of thin metal film growth on weakly-interacting substrates using gaseous surfactants2019Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Thin films are structures with thicknesses ranging from the atomic scale to the mesoscale that are used to alter the properties of a surface and/or serve as functional layers in devices. Thin metal films deposited from the vapor phase on weakly-interacting substrates, including oxides (TiO2, ZnO, SiO2 etc.) and two-dimensional (2D) materials (graphene, MoS2, etc), are relevant for a wide array of technological applications, such as optical devices, nanoelectronic components, sensors, and catalytic devices. The weak interaction between deposit and surface in these film/substrate combinations leads to three-dimensional (3D) metal-layer morphological evolution in an uncontrolled manner; which often constitutes an important challenge toward integrating metal layers in key enabling devices. Thus there is a need for efficient growth manipulation strategies, such that metal films with controlled 3D and 2D microstructures and morphologies can be synthesized.

    Surfactants, i.e., minority metal, non-metal, and gaseous species which are deployed to the growing surface together with film-forming species, have been shown to enable growth manipulation in a multitude of homo- and heteroepitaxial metal/metal and semiconductor/semiconductor systems. This work explores the viability of N2 and O2 surfactants to manipulate growth in model weakly-interacting Ag/SiO2 and Au/SiO2 systems.

    Au and Ag are deposited by direct current (DC) magnetron sputtering on Si substrates covered with a 500 nm thick thermally grown SiO2 layer. Gaseous N2 and O2 surfactants are introduced to the sputtering atmosphere either continuously during deposition or at well-defined points during growth, such that specific film-formation stages as targeted. Using a combination of in situ/real-time diagnostic tools and ex situ characterization techniques, it is shown that O2 and N2 cause Ag and Au, respectively, to grow flatter, i.e., 2D growth morphology is promoted. Moreover, by deploying surfactants selectively during early or late film growth stages and studying their effect on film morphological evolution, it is concluded that N2 and O2 effectively suppress the rate of island coalescence promoting formation of flatter films.

    The overall results of this study are the first step toward establishing an atomic-scale understanding of the effect of surfactants on morphological evolution of metal films on weakly-interacting substrates. The knowledge generated herein is relevant for designing growth manipulation strategies in a wide range of technologically important film/substrate systems.

    Download full text (pdf)
    Manipulation of thin metal film growth on weakly-interacting substrates using gaseous surfactants
  • 22. Order onlineBuy this publication >>
    Lü, Bo
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Nano- and mesoscale morphology evolution of metal films on weakly-interacting surfaces2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Thin films are structures consisting of one or several nanoscale atomic layers of material that are used to either functionalize a surface or constitute components in more complex devices. Many properties of a film are closely related to its microstructure, which allows films to be tailored to meet specific technological requirements. Atom-by-atom film growth from the vapor phase involves a multitude of atomic processes that may not be easily studied experimentally in real-time because they occur in small length- (≤ Å) and timescales (≤ ns). Therefore, different types of computer simulation methods have been developed in order to test theoretical models of thin film growth and unravel what experiments cannot show. In order to compare simulated and experimental results, the simulations must be able to model events on experimental time-scales, i.e. on the order of microseconds to seconds. This is achievable with the kinetic Monte Carlo (kMC) method.

    In this work, the initial growth stages of metal deposition on weakly-interacting substrates is studied using both kMC simulations as well as experiments whereby growth was monitored using in situ probes. Such film/substrate material combinations are widely encountered in technological applications including low-emissivity window coatings to parts of microelectronics components. In the first part of this work, a kMC algorithm was developed to model the growth processes of island nucleation, growth and coalescence when these are functions of deposition parameters such as the vapor deposition rate and substrate temperature. The dynamic interplay between these growth processes was studied in terms of the scaling behavior of the film thickness at the elongation transition, for both continuous and pulsed deposition fluxes, and revealed in both cases two distinct growth regimes in which coalescence is either active or frozen out during deposition. These growth regimes were subsequently confirmed in growth experiments of Ag on SiO2, again for both pulsed and continuous deposition, by measuring the percolation thickness as well as the continuous film formation thickness. However, quantitative agreement with regards to scaling exponents in the two growth regimes was not found between simulations and experiments, and this prompted the development of a method to determine the elongation transition thickness experimentally. Using this method, the elongation transition of Ag on SiO2 was measured, with scaling exponents found in much better agreement with the simulation results. Further, these measurement data also allowed the calculation of surface properties such as the terrace diffusion barrier of Ag on SiO2 and the average island coalescence rate.

    In the second part of this thesis, pioneering work is done to develop a fully atomistic, on-lattice model which describes the growth of Ag on weakly-interacting substrates. Simulations performed using this model revealed several key atomic-scale processes occurring at the film/substrate interface and on islands which govern island shape evolution, thereby contributing to a better understanding of how 3D island growth occurs at the atomic scale for a wide class of materials. The latter provides insights into the directed growth of metal nanostructures with controlled shapes on weakly-interacting substrates, including twodimensional crystals for use in catalytic and nano-electronic applications.

    List of papers
    1. Unravelling the Physical Mechanisms that Determine Microstructural Evolution of Ultrathin Volmer-Weber Films
    Open this publication in new window or tab >>Unravelling the Physical Mechanisms that Determine Microstructural Evolution of Ultrathin Volmer-Weber Films
    2014 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 116, no 4, p. 044302-Article in journal (Refereed) Published
    Abstract [en]

    The initial formation stages (i.e., island nucleation, island growth, and island coalescence) set characteristic length scales during growth of thin films from the vapour phase. They are, thus, decisive for morphological and microstructural features of films and nanostructures. Each of the initial formation stages has previously been well-investigated separately for the case of Volmer-Weber growth, but knowledge on how and to what extent each stage individually and all together affect the microstructural evolution is still lacking. Here we address this question using growth of Ag on SiO2 from pulsed vapour fluxes as a case study. By combining in situ growth monitoring, ex situ imaging and growth simulations we systematically study the growth evolution all the way from nucleation to formation of a continuous film and establish the effect of the vapour flux time domain on the scaling behaviour of characteristic growth transitions (elongation transition, percolation and continuous film formation). Our data reveal a pulsing frequency dependence for the characteristic film growth transitions, where the nominal transition thickness decreases with increasing pulsing frequency up to a certain value after which a steady-state behaviour is observed. The scaling behaviour is shown to result from differences in island sizes and densities, as dictated by the initial film formation stages. These differences are determined solely by the interplay between the characteristics of the vapour flux and time required for island coalescence to be completed. In particular, our data provide evidence that the steady-state scaling regime of the characteristic growth transitions is caused by island growth that hinders coalescence from being completed, leading to a coalescence-free growth regime.

    National Category
    Physical Sciences
    Identifiers
    urn:nbn:se:liu:diva-103920 (URN)10.1063/1.4890522 (DOI)000340710700078 ()
    Available from: 2014-02-03 Created: 2014-02-03 Last updated: 2018-01-11
    2. Dynamic competition between island growth and coalescence in metal-on-insulator deposition
    Open this publication in new window or tab >>Dynamic competition between island growth and coalescence in metal-on-insulator deposition
    2014 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 105, no 16, p. 163107-1-163107-5Article in journal (Refereed) Published
    Abstract [en]

    The morphology of thin metal films and nanostructures synthesized from the vapor phase on insulating substrates is strongly influenced by the coalescence of islands. Here, we derive analytically the quantitative criterion for coalescence suppression by combining atomistic nucleation theory and a classical model of coalescence. Growth simulations show that using this criterion, a coalescence-free growth regime can be reached in which morphological evolution is solely determined by island nucleation, growth, and impingement. Experimental validation for the ability to control the rate of coalescence using this criterion and navigate between different growth regimes is provided by in situ monitoring of Ag deposition on SiO2. Our findings pave the way for creating thin films and nanostructures that exhibit a wide range of morphologies and physical attributes in a knowledge-based manner.

    Place, publisher, year, edition, pages
    American Institute of Physics (AIP), 2014
    National Category
    Physical Sciences
    Identifiers
    urn:nbn:se:liu:diva-112133 (URN)10.1063/1.4900575 (DOI)000344363000073 ()
    Available from: 2014-11-17 Created: 2014-11-17 Last updated: 2018-01-11Bibliographically approved
    3. Coalescence-controlled and coalescence-free growth regimes during deposition of pulsed metal vapor fluxes on insulating surfaces
    Open this publication in new window or tab >>Coalescence-controlled and coalescence-free growth regimes during deposition of pulsed metal vapor fluxes on insulating surfaces
    2015 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 117, no 13, article id 134304Article in journal (Refereed) Published
    Abstract [en]

    The morphology and physical properties of thin films deposited by vapor condensation on solid surfaces are predominantly set by the processes of island nucleation, growth, and coalescence. When deposition is performed using pulsed vapor fluxes, three distinct nucleation regimes are known to exist depending on the temporal profile of the flux. These regimes can be accessed by tuning deposition conditions; however, their effect on film microstructure becomes marginal when coalescence sets in and erases morphological features obtained during nucleation. By preventing coalescence from being completed, these nucleation regimes can be used to control microstructure evolution and thus access a larger palette of film morphological features. Recently, we derived the quantitative criterion to stop coalescence during continuous metal vapor flux deposition on insulating surfaceswhich typically yields 3-dimensional growthby describing analytically the competition between island growth by atomic incorporation and the coalescence rate of islands [Lu et al., Appl. Phys. Lett. 105, 163107 (2014)]. Here, we develop the analytical framework for entering a coalescence-free growth regime for metal vapor deposition on insulating substrates using pulsed vapor fluxes, showing that there exist three distinct criteria for suppressing coalescence that correspond to the three nucleation regimes of pulsed vapor flux deposition. The theoretical framework developed herein is substantiated by kinetic Monte Carlo growth simulations. Our findings highlight the possibility of using atomistic nucleation theory for pulsed vapor deposition to control morphology of thin films beyond the point of island density saturation. (C) 2015 AIP Publishing LLC.

    Place, publisher, year, edition, pages
    American Institute of Physics (AIP), 2015
    National Category
    Manufacturing, Surface and Joining Technology
    Identifiers
    urn:nbn:se:liu:diva-117792 (URN)10.1063/1.4916983 (DOI)000352645100033 ()
    Note

    Funding Agencies|Linkoping University via the "LiU Research Fellows" program; Swedish Research Council [VR 621-2011-5312]; AForsk through the project "Towards Next Generation Energy Saving Windows"

    Available from: 2015-05-11 Created: 2015-05-08 Last updated: 2018-03-13
    4. Scaling of elongation transition thickness during thin-film growth on weakly interacting substrates
    Open this publication in new window or tab >>Scaling of elongation transition thickness during thin-film growth on weakly interacting substrates
    2017 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 111, no 8, article id 084101Article in journal (Refereed) Published
    Abstract [en]

    The elongation transition thickness (hElong) is a central concept in the theoretical description of thin-film growth dynamics on weakly interacting substrates via scaling relations of hElong with respect to rates of key atomistic film-forming processes. To date, these scaling laws have only been confirmed quantitatively by simulations, while experimental proof has been left ambiguous as it has not been possible to measure hElong. Here, we present a method for determining experimentally hElong for Ag films growing on amorphous SiO2: an archetypical weakly interacting film/substrate system. Our results confirm the theoretically predicted hElong scaling behavior, which then allow us to calculate the rates of adatom diffusion and island coalescence completion, in good agreement with the literature. The methodology presented herein casts the foundation for studying growth dynamics and cataloging atomistic-process rates for a wide range of weakly interacting film/substrate systems. This may provide insights into directed growth of metal films with a well-controlled morphology and interfacial structure on 2D crystals-including graphene and MoS2-for catalytic and nanoelectronic applications. Published by AIP Publishing.

    Place, publisher, year, edition, pages
    American Institute of Physics (AIP), 2017
    National Category
    Condensed Matter Physics
    Identifiers
    urn:nbn:se:liu:diva-140966 (URN)10.1063/1.4993252 (DOI)000408570000044 ()2-s2.0-85028308625 (Scopus ID)
    Note

    Funding Agencies|Linkoping University (LiU) [Dnr-LiU-2015-01510]; Swedish research council [VR-2011-5312, VR-2015-04630]; Swedish National Infrastructure for Computing (SNIC) at the National Supercomputer Centre (NSC)

    Available from: 2017-09-19 Created: 2017-09-19 Last updated: 2018-01-11Bibliographically approved
    Download full text (pdf)
    Nano- and mesoscale morphology evolution of metal films on weakly-interacting surfaces
    Download (pdf)
    omslag
    Download (png)
    presentationsbild
  • 23.
    Lü, Bo
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Almyras, Georgios
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Gervilla Palomar, Victor
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA; Univ Illinois, IL 61801 USA.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Formation and morphological evolution of self-similar 3D nanostructures on weakly interacting substrates2018In: Physical Review Materials, E-ISSN 2475-9953, Vol. 2, no 6, article id 063401Article in journal (Refereed)
    Abstract [en]

    Vapor condensation on weakly interacting substrates leads to the formation of three-dimensional (3D) nanoscale islands (i.e., nanostructures). While it is widely accepted that this process is driven by minimization of the total film/substrate surface and interface energy, current film-growth theory cannot fully explain the atomic-scale mechanisms and pathways by which 3D island formation and morphological evolution occurs. Here, we use kinetic Monte Carlo simulations to describe the dynamic evolution of single-island shapes during deposition of Ag on weakly interacting substrates. The results show that 3D island shapes evolve in a self-similar manner, exhibiting a constant height-to-radius aspect ratio, which is a function of the growth temperature. Furthermore, our results reveal the following chain of atomic-scale events that lead to compact 3D island shapes: 3D nuclei are first formed due to facile adatom ascent at single-layer island steps, followed by the development of sidewall facets bounding the islands, which in turn facilitates upward diffusion from the base to the top of the islands. The limiting atomic process which determines the island height, for a given number of deposited atoms, is the temperature-dependent rate at which adatoms cross from sidewall facets to the island top. The overall findings of this study provide insights into the directed growth of metal nanostructures with controlled shapes on weakly interacting substrates, including two-dimensional crystals, for use in catalytic and nanoelectronic applications.

    Download full text (pdf)
    fulltext
  • 24.
    Lü, Bo
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Münger, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Coalescence-controlled and coalescence-free growth regimes during deposition of pulsed metal vapor fluxes on insulating surfaces2015In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 117, no 13, article id 134304Article in journal (Refereed)
    Abstract [en]

    The morphology and physical properties of thin films deposited by vapor condensation on solid surfaces are predominantly set by the processes of island nucleation, growth, and coalescence. When deposition is performed using pulsed vapor fluxes, three distinct nucleation regimes are known to exist depending on the temporal profile of the flux. These regimes can be accessed by tuning deposition conditions; however, their effect on film microstructure becomes marginal when coalescence sets in and erases morphological features obtained during nucleation. By preventing coalescence from being completed, these nucleation regimes can be used to control microstructure evolution and thus access a larger palette of film morphological features. Recently, we derived the quantitative criterion to stop coalescence during continuous metal vapor flux deposition on insulating surfaceswhich typically yields 3-dimensional growthby describing analytically the competition between island growth by atomic incorporation and the coalescence rate of islands [Lu et al., Appl. Phys. Lett. 105, 163107 (2014)]. Here, we develop the analytical framework for entering a coalescence-free growth regime for metal vapor deposition on insulating substrates using pulsed vapor fluxes, showing that there exist three distinct criteria for suppressing coalescence that correspond to the three nucleation regimes of pulsed vapor flux deposition. The theoretical framework developed herein is substantiated by kinetic Monte Carlo growth simulations. Our findings highlight the possibility of using atomistic nucleation theory for pulsed vapor deposition to control morphology of thin films beyond the point of island density saturation. (C) 2015 AIP Publishing LLC.

  • 25.
    Lü, Bo
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Souqui, Laurent
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Elofsson, Viktor
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Scaling of elongation transition thickness during thin-film growth on weakly interacting substrates2017In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 111, no 8, article id 084101Article in journal (Refereed)
    Abstract [en]

    The elongation transition thickness (hElong) is a central concept in the theoretical description of thin-film growth dynamics on weakly interacting substrates via scaling relations of hElong with respect to rates of key atomistic film-forming processes. To date, these scaling laws have only been confirmed quantitatively by simulations, while experimental proof has been left ambiguous as it has not been possible to measure hElong. Here, we present a method for determining experimentally hElong for Ag films growing on amorphous SiO2: an archetypical weakly interacting film/substrate system. Our results confirm the theoretically predicted hElong scaling behavior, which then allow us to calculate the rates of adatom diffusion and island coalescence completion, in good agreement with the literature. The methodology presented herein casts the foundation for studying growth dynamics and cataloging atomistic-process rates for a wide range of weakly interacting film/substrate systems. This may provide insights into directed growth of metal films with a well-controlled morphology and interfacial structure on 2D crystals-including graphene and MoS2-for catalytic and nanoelectronic applications. Published by AIP Publishing.

    Download full text (pdf)
    fulltext
  • 26.
    Magnfält, Daniel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Fillon, A.
    University of Poitiers, France; INSA Rennes, France.
    Boyd, Robert
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, Faculty of Science & Engineering.
    Helmersson, Ulf
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, Faculty of Science & Engineering.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Abadias, G.
    University of Poitiers, France.
    Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films2016In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 119, no 5, p. 055305-Article in journal (Refereed)
    Abstract [en]

    Intrinsic stresses in vapor deposited thin films have been a topic of considerable scientific and technological interest owing to their importance for functionality and performance of thin film devices. The origin of compressive stresses typically observed during deposition of polycrystalline metal films at conditions that result in high atomic mobility has been under debate in the literature in the course of the past decades. In this study, we contribute towards resolving this debate by investigating the grain size dependence of compressive stress magnitude in dense polycrystalline Mo films grown by magnetron sputtering. Although Mo is a refractory metal and hence exhibits an intrinsically low mobility, low energy ion bombardment is used during growth to enhance atomic mobility and densify the grain boundaries. Concurrently, the lateral grain size is controlled by using appropriate seed layers on which Mo films are grown epitaxially. The combination of in situ stress monitoring with ex situ microstructural characterization reveals a strong, seemingly linear, increase of the compressive stress magnitude on the inverse grain size and thus provides evidence that compressive stress is generated in the grain boundaries of the film. These results are consistent with models suggesting that compressive stresses in metallic films deposited at high homologous temperatures are generated by atom incorporation into and densification of grain boundaries. However, the underlying mechanisms for grain boundary densification might be different from those in the present study where atomic mobility is intrinsically low. (C) 2016 AIP Publishing LLC.

  • 27.
    Magnfält, Daniel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Melander, E.
    Uppsala University, Sweden.
    Boyd, Robert
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, Faculty of Science & Engineering.
    Kapaklis, V.
    Uppsala University, Sweden.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Synthesis of tunable plasmonic metal-ceramic nanocomposite thin films by temporally modulated sputtered fluxes2017In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 121, no 17, article id 171918Article in journal (Refereed)
    Abstract [en]

    The scientific and technological interest for metal-dielectric nanocomposite thin films emanates from the excitation of localized surface plasmon resonances (LSPRs) on the metal component. The overall optical response of the nanocomposite is governed by the refractive index of the dielectric matrix and the properties of the metallic nanoparticles in terms of their bulk optical properties, size, and shape, and the inter-particle distance of separation. In order to tune the film morphology and optical properties, complex synthesis processes which include multiple steps-i. e., film deposition followed by post-deposition treatment by thermal or laser annealing-are commonly employed. In the present study, we demonstrate that the absorption resonances of Ag/AlOxNy nanocomposite films can be effectively tuned from green (similar to 2.4 eV) to violet (similar to 2.8 eV) using a single-step synthesis process that is based on modulating the arrival pattern of film forming species with sub-monolayer resolution, while keeping the amount of Ag in the films constant. Our data indicate that the optical response of the films is the result of LSPRs on isolated Ag nanoparticles that are seemingly shifted by dipolar interactions between neighboring particles. The synthesis strategy presented may be of relevance for enabling integration of plasmonic nanocomposite films on thermally sensitive substrates. Published by AIP Publishing.

    Download full text (pdf)
    fulltext
  • 28.
    Magnuson, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Tengdelius, Lina
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eriksson, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Samuelsson, Mattias
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Broitman, Esteban
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Högberg, Hans
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Reactive magnetron sputtering of tungsten target in krypton/trimethylboron atmosphere2019In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 688, article id 137384Article in journal (Refereed)
    Abstract [en]

    W-B-C films were deposited on Si(100) substrates held at elevated temperature by reactive sputtering from a W target in Kr/trimethylboron (TMB) plasmas. Quantitative analysis by Xray photoelectron spectroscopy (XPS) shows that the films are W-rich between ~ 73 and ~ 93 at.% W. The highest metal content is detected in the film deposited with 1 sccm TMB. The C and B concentrations increase with increasing TMB flow to a maximum of ~18 and ~7 at.%, respectively, while the O content remains nearly constant at 2-3 at.%. Chemical bonding structure analysis performed after samples sputter-cleaning reveals C-W and B-W bonding and no detectable W-O bonds. During film growth with 5 sccm TMB and 500 o C or with 10 sccm TMB and 300-600 o C thin film X-ray diffraction shows the formation of cubic 100-oriented WC1-x with a possible solid solution of B. Lower flows and lower growth temperatures favor growth of W and W2C, respectively. Depositions at 700 and 800 o C result in the formation of WSi2 due to a reaction with the substrate. At 900 o C, XPS analysis shows ~96 at.% Si in the film due to Si interdiffusion. Scanning electron microscopy images reveal a fine-grained microstructure for the deposited WC1-x films. Nanoindentation gives hardness values in the range from ~23 to ~31 GPa and reduced elastic moduli between ~220 and 280 GPa in the films deposited at temperatures lower than 600 o C. At higher growth temperatures the hardness decreases by a factor of 3 to 4 following the formation of WSi2 at 700-800 o C and Si-rich surface at 900 o C.

    Download full text (pdf)
    Reactive magnetron sputtering of tungsten target in krypton/trimethylboron atmosphere
  • 29.
    Magnuson, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Tengdelius, Lina
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eriksson, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Samuelsson, Mattias
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Högberg, Hans
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Compositional dependence of epitaxial Tin+1SiCn MAX-phase thin films grown from a Ti3SiC2 compound target2019In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 37, no 2, article id 021506Article in journal (Refereed)
    Abstract [en]

    The authors investigate sputtering of a Ti3SiC2 compound target at temperatures ranging from RT (no applied external heating) to 970 °C as well as the influence of the sputtering power at 850 °C for the deposition of Ti3SiC2 films on Al2O3(0001) substrates. Elemental composition obtained from time-of-flight energy elastic recoil detection analysis shows an excess of carbon in all films, which is explained by differences in the angular distribution between C, Si, and Ti, where C scatters the least during sputtering. The oxygen content is 2.6 at. % in the film deposited at RT and decreases with increasing deposition temperature, showing that higher temperatures favor high purity films. Chemical bonding analysis by x-ray photoelectron spectroscopy shows C–Ti and Si–C bonding in the Ti3SiC2 films and Si–Si bonding in the Ti3SiC2 compound target. X-ray diffraction reveals that the phases Ti3SiC2, Ti4SiC3, and Ti7Si2C5 can be deposited from a Ti3SiC2 compound target at substrate temperatures above 850 °C and with the growth of TiC and the Nowotny phase Ti5Si3Cx at lower temperatures. High-resolution scanning transmission electron microscopy shows epitaxial growth of Ti3SiC2, Ti4SiC3, and Ti7Si2C5 on TiC at 970 °C. Four-point probe resistivity measurements give values in the range ∼120 to ∼450 μΩ cm and with the lowest values obtained for films containing Ti3SiC2, Ti4SiC3, and Ti7Si2C5.

    Download full text (pdf)
    Compositional dependence of epitaxial Tin+1SiCn MAX-phase thin films grown from a Ti3SiC2 compound target
  • 30.
    Nygren, K.
    et al.
    Uppsala University, Sweden; Impact Coatings AB, Westmansgatan 29, SE-58216 Linkoping, Sweden.
    Samuelsson, Mattias
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering. Impact Coatings AB, Westmansgatan 29, SE-58216 Linkoping, Sweden.
    Arwin, Hans
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Impact Coatings AB, Westmansgatan 29, SE-58216 Linkoping, Sweden.
    Jansson, U.
    Uppsala University, Sweden.
    Optical methods to quantify amorphous carbon in carbide-based nanocomposite coatings2017In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 638, p. 291-297Article in journal (Refereed)
    Abstract [en]

    We report how the total carbon content and the amorphous carbon (a-C) phase fraction in transition metal carbide/a-C nanocomposite coatings can be obtained using optical methods, which are much more practical for industrial use than conventional X-ray photoelectron spectroscopy. A large set of carbon-containing nanocomposite coatings deposited using different magnetron sputtering techniques were analyzed by X-ray photoelectron spectroscopy, reflectance spectrophotometry, and spectroscopic ellipsometry. The chemical composition and the a-C phase fraction were determined by X-ray photoelectron spectroscopy for each coating and results are presented for the Ti-C, Cr-C, and Nb-C systems. The composition and the a-C phase fraction are correlated to optical reflectance in the visible range, by parametrization in L*a*b* color space, and by ellipsometry primary data. Results show that it is possible to rapidly estimate the composition and the a-C fraction using these optical methods. We propose that optical methods have promising use in the industry as a cost-efficient technique for characterization of carbide-based coatings. (C) 2017 Elsevier B.V. All rights reserved.

  • 31.
    Papaderakis, Athanasios
    et al.
    Aristotle Univ Thessaloniki, Greece; Univ Manchester, England.
    Matouli, Ioanna
    Aristotle Univ Thessaloniki, Greece.
    Spyridou, Olga Niki
    Aristotle Univ Thessaloniki, Greece.
    Grammenos, Anastasios Orestis
    Aristotle Univ Thessaloniki, Greece.
    Banti, Angeliki
    Aristotle Univ Thessaloniki, Greece.
    Touni, Aikaterini
    Aristotle Univ Thessaloniki, Greece.
    Pliatsikas, Nikolaos
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Patsalas, Panagiotis
    Aristotle Univ Thessaloniki, Greece.
    Sotiropoulos, Sotiris
    Aristotle Univ Thessaloniki, Greece.
    Ternary IrO2-Pt-Ni deposits prepared by galvanic replacement as bifunctional oxygen catalysts2020In: JOURNAL OF ELECTROANALYTICAL CHEMISTRY, ISSN 1572-6657, Vol. 877, article id 114499Article in journal (Refereed)
    Abstract [en]

    Bifunctional oxygen catalysts with IrO2 and Pt active components have been prepared by means of galvanic partial replacement of Ni layers electrodeposited on glassy carbon substrates (Ni/GC). The resulting IrO2Pt(Ni)/GC electrodes have a homogeneous and compact morphology (SEM), while surface electrochemistry and spectroscopic measurements (EDS, XPS) confirm the ternary bulk structure (EDS: 56.39% Ir- 7.60% Pt - 36.01% Ni atomic ratio) and the existence of a IrO2-Pt thin skin on the outermost layers of the deposits (XPS: Ir+ Pt atomic ratio of 21.7). IrO2Pt (Ni)/GC electrodes were evaluated as bifunctional electrocatalysts for oxygen evolution (OER) and oxygen reduction (ORR) reactions in acid, by means of steady-state current-potential measurements and linear sweep voltanunetry at a Rotating Disc Electrode (RDE) respectively. The OER overpotential required for a current density (per substrate geometric area) of 1 (eta(1)) and 10 mA cm(-2) (eta(10)) on the prepared electrodes was 235 and 302 my respectively, which is in the range of some typical thermally produced IrO2-based DSAs. Their intrinsic OER catalytic activity (as estimated by normalization of the recorded currents at an overpotential of 260 mV by the oxides charge) was found to be 0.29 mA mC(-1) comparable or better to other thermally produced IrO2 and Pt-IrO2 systems. Koutecky-Levich analysis shows that ORR proceeds on the ternary catalysts via the four electrons pathway. The overall ORR catalytic activity (0.4 mA cm(-2) at +0.8 V vs. SIIE) is found to be in the range of that recorded on nanoparticle catalysts, while a suppression of the intrinsic activity compared to bulk Pt is observed most probably due to the presence of IrO2, the latter being in line with similar non-alloyed Pt-IrO2 systems reported in the literature.

  • 32.
    Pliatsikas, Nikolaos
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Jamnig, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering. Univ Poitiers, France.
    Konpan, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Delimitis, Andreas
    Univ Stavanger, Norway.
    Abadias, Gregory
    Univ Poitiers, France.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Manipulation of thin silver film growth on weakly interacting silicon dioxide substrates using oxygen as a surfactant2020In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 38, no 4, article id 043406Article in journal (Refereed)
    Abstract [en]

    The authors study the morphological evolution of magnetron-sputtered thin silver (Ag) films that are deposited on weakly interacting silicon dioxide (SiO2) substrates in an oxygen-containing (O-2) gas atmosphere. In situ and real-time monitoring of electrically conductive layers, along with ex situ microstructural analyses, shows that the presence of O-2, throughout all film-formation stages, leads to a more pronounced two-dimensional (2D) morphology, smoother film surfaces, and larger continuous-layer electrical resistivities, as compared to Ag films grown in pure argon (Ar) ambient. In addition, the authors data demonstrate that 2D morphology can be promoted, without compromising the Ag-layer electrical conductivity, if O-2 is deployed with high temporal precision to target film formation stages before the formation of a percolated layer. Detailed real-space imaging of discontinuous films, augmented by in situ growth monitoring data, suggests that O-2 favors 2D morphology by affecting the kinetics of initial film-formation stages and most notably by decreasing the rate of island coalescence completion. Furthermore, compositional and bonding analyses show that O-2 does not change the chemical nature of the Ag layers and no atomic oxygen is detected in the films, i.e., O-2 acts as a surfactant. The overall results of this study are relevant for developing noninvasive surfactant-based strategies for manipulating noble-metal-layer growth on technologically relevant weakly interacting substrates, including graphene and other 2D crystals.

    Download full text (pdf)
    fulltext
  • 33.
    Pliatsikas, Nikolaos
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Karabinaki, O.
    Aristotle Univ Thessaloniki, Greece.
    Zarshenas, Mohammad
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Almyras, Georgios
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Shtepliuk, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Arvanitidis, J.
    Aristotle Univ Thessaloniki, Greece.
    Christofilos, D.
    Aristotle Univ Thessaloniki, Greece.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering. Univ Helsinki, Finland.
    Energetic bombardment and defect generation during magnetron-sputter-deposition of metal layers on graphene2021In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 566, article id 150661Article in journal (Refereed)
    Abstract [en]

    In the present work, we elucidate the interplay among energetic bombardment effects in magnetron sputtering and defect generation in two-dimensional (2D) materials. Using deposition of gold (Au) layers on single-layer graphene (SLG) as a model system, we study the effect of pressure-distance (pd) product during magnetron sputtering on the pristine SLG properties. Raman spectroscopy, complemented by X-ray photoelectron spectroscopy, shows that for pd = 8.2 Pa center dot cm, Au layer deposition causes defects in the SLG layer, which gradually diminish and eventually disappear with increasing pd to 82.5 Pa center dot cm. Stochastic and deterministic simulations of the sputtering process, the gas-phase transport, and the interaction of sputtered and plasma species with the substrate surface suggest that defects in SLG primarily emanate from ballistic damage caused by backscattered Ar atoms with energies above 100 eV. With increasing pd, and thereby gas-phase scattering, such high energy Ar species become thermalized and hence incapable of causing atomic displacements in the SLG layer. The overall results of our study suggest that control of backscattered Ar energy is a potential path toward enabling magnetron sputtering for fabrication of multifunctional metal contacts in devices founded upon 2D materials.

    Download full text (pdf)
    fulltext
  • 34. </