liu.seSearch for publications in DiVA
Change search
Refine search result
1234567 1 - 50 of 340
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Order onlineBuy this publication >>
    Ahlström, Christer
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, Faculty of Health Sciences.
    Nonlinear phonocardiographic Signal Processing2008Doctoral thesis, monograph (Other academic)
    Abstract [en]

    The aim of this thesis work has been to develop signal analysis methods for a computerized cardiac auscultation system, the intelligent stethoscope. In particular, the work focuses on classification and interpretation of features derived from the phonocardiographic (PCG) signal by using advanced signal processing techniques.

    The PCG signal is traditionally analyzed and characterized by morphological properties in the time domain, by spectral properties in the frequency domain or by nonstationary properties in a joint time-frequency domain. The main contribution of this thesis has been to introduce nonlinear analysis techniques based on dynamical systems theory to extract more information from the PCG signal. Especially, Takens' delay embedding theorem has been used to reconstruct the underlying system's state space based on the measured PCG signal. This processing step provides a geometrical interpretation of the dynamics of the signal, whose structure can be utilized for both system characterization and classification as well as for signal processing tasks such as detection and prediction. In this thesis, the PCG signal's structure in state space has been exploited in several applications. Change detection based on recurrence time statistics was used in combination with nonlinear prediction to remove obscuring heart sounds from lung sound recordings in healthy test subjects. Sample entropy and mutual information were used to assess the severity of aortic stenosis (AS) as well as mitral insufficiency (MI) in dogs. A large number of, partly nonlinear, features was extracted and used for distinguishing innocent murmurs from murmurs caused by AS or MI in patients with probable valve disease. Finally, novel work related to very accurate localization of the first heart sound by means of ECG-gated ensemble averaging was conducted. In general, the presented nonlinear processing techniques have shown considerably improved results in comparison with other PCG based techniques.

    In modern health care, auscultation has found its main role in primary or in home health care, when deciding if special care and more extensive examinations are required. Making a decision based on auscultation is however difficult, why a simple tool able to screen and assess murmurs would be both time- and cost-saving while relieving many patients from needless anxiety. In the emerging field of telemedicine and home care, an intelligent stethoscope with decision support abilities would be of great value.

    Download full text (pdf)
    FULLTEXT01
    Download (pdf)
    COVER01
  • 2. Order onlineBuy this publication >>
    Ahlström, Christer
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Processing of the Phonocardiographic Signal: methods for the intelligent stethoscope2006Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Phonocardiographic signals contain bioacoustic information reflecting the operation of the heart. Normally there are two heart sounds, and additional sounds indicate disease. If a third heart sound is present it could be a sign of heart failure whereas a murmur indicates defective valves or an orifice in the septal wall. The primary aim of this thesis is to use signal processing tools to improve the diagnostic value of this information. More specifically, three different methods have been developed:

    • A nonlinear change detection method has been applied to automatically detect heart sounds. The first and the second heart sounds can be found using recurrence times of the first kind while the third heart sound can be found using recurrence times of the second kind. Most third heart sound occurrences were detected (98 %), but the amount of false extra detections was rather high (7 % of the heart cycles).

    • Heart sounds obscure the interpretation of lung sounds. A new method based on nonlinear prediction has been developed to remove this undesired disturbance. High similarity was obtained when comparing actual lung sounds with lung sounds after removal of heart sounds.

    • Analysis methods such as Shannon energy, wavelets and recurrence quantification analysis were used to extract information from the phonocardiographic signal. The most prominent features, determined by a feature selection method, were used to create a new feature set for heart murmur classification. The classification result was 86 % when separating patients with aortic stenosis, mitral insufficiency and physiological murmurs.

    The derived methods give reasonable results, and they all provide a step forward in the quest for an intelligent stethoscope, a universal phonocardiography tool able to enhance auscultation by improving sound quality, emphasizing abnormal events in the heart cycle and distinguishing different heart murmurs.

    List of papers
    1. Heart sound cancellation from lung sound recordings using recurrence time statistics and nonlinear prediction
    Open this publication in new window or tab >>Heart sound cancellation from lung sound recordings using recurrence time statistics and nonlinear prediction
    2005 (English)In: IEEE Signal Processing Letters, ISSN 1070-9908, E-ISSN 1558-2361, Vol. 12, no 12, p. 812-815Article in journal (Refereed) Published
    Abstract [en]

    Heart sounds (HS) obscure the interpretation of lung sounds (LS). This letter presents a new method to detect and remove this undesired disturbance. The HS detection algorithm is based on a recurrence time statistic that is sensitive to changes in a reconstructed state space. Signal segments that are found to contain HS are removed, and the arising missing parts are replaced with predicted LS using a nonlinear prediction scheme. The prediction operates in the reconstructed state space and uses an iterated integrated nearest trajectory algorithm. The HS detection algorithm detects HS with an error rate of 4% false positives and 8% false negatives. The spectral difference between the reconstructed LS signal and an LS signal with removed HS was 0.34/spl plusmn/0.25, 0.50/spl plusmn/0.33, 0.46/spl plusmn/0.35, and 0.94/spl plusmn/0.64 dB/Hz in the frequency bands 20-40, 40-70, 70-150, and 150-300 Hz, respectively. The cross-correlation index was found to be 99.7%, indicating excellent similarity between actual LS and predicted LS. Listening tests performed by a skilled physician showed high-quality auditory results.

    Place, publisher, year, edition, pages
    Institutionen för medicinsk teknik, 2005
    Keywords
    Bioacoustics, heart sound (HS), lung sound (LS), nonlinear prediction, recurrence time statistics
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-11857 (URN)10.1109/LSP.2005.859528 (DOI)
    Note
    Original publication: Ahlstrom, C., Liljefeldt, O., Hult, P. and Ask, P., Heart sound cancellation from lung sound recordings using recurrence time statistics and nonlinear prediction, 2005, IEEE Signal Processing Letters, (12), 12, 812-815. http://dx.doi.org/10.1109/LSP.2005.859528. Copyright: IEEE, http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=97Available from: 2008-05-20 Created: 2008-05-20 Last updated: 2021-11-25
    2. Detection of the 3rd Heart Sound using Recurrence Time Statistics
    Open this publication in new window or tab >>Detection of the 3rd Heart Sound using Recurrence Time Statistics
    2006 (English)In: Proc. 31st IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Toulouse, France, 2006, 2006, p. 1040-1043Conference paper, Published paper (Other academic)
    Abstract [en]

    The 3rd heart sound (S3) is normally heard during auscultation of younger individuals, but it is also common in many patients with heart failure. Compared to the 1st and 2nd heart sounds, S3 has low amplitude and low frequency content, making it hard to detect (both manually for the physician and automatically by a detection algorithm). We present an algorithm based on a recurrence time statistic which is sensitive to changes in a reconstructed state space, particularly for detection of transitions with very low energy. Heart sound signals from ten children were used in this study. Most S3 occurrences were detected (98 %), but the amount of false extra detections was rather high (7% of the heart cycles). In conclusion, the method seems capable of detecting S3 with high accuracy and robustness.

    Series
    IEEE International Conference on Acoustics, Speech and Signal Processing. Proceedings, ISSN 1520-6149
    Keywords
    acoustic, signal detection, bioacoustics, signal reconstruction, statistics, heart sound, auscultation, heart failure, reconstructed state space, recurrence time statistics
    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:liu:diva-14058 (URN)
    Available from: 2006-10-09 Created: 2006-10-09 Last updated: 2021-11-25
    3. Feature Extraction for Systolic Heart Murmur Classification
    Open this publication in new window or tab >>Feature Extraction for Systolic Heart Murmur Classification
    Show others...
    2006 (English)In: Annals of Biomedical Engineering, ISSN 0090-6964, E-ISSN 1573-9686, Vol. 34, no 11, p. 1666-1677Article in journal (Refereed) Published
    Abstract [en]

    Heart murmurs are often the first signs of pathological changes of the heart valves, and they are usually found during auscultation in the primary health care. Distinguishing a pathological murmur from a physiological murmur is however difficult, why an “intelligent stethoscope” with decision support abilities would be of great value. Phonocardiographic signals were acquired from 36 patients with aortic valve stenosis, mitral insufficiency or physiological murmurs, and the data were analyzed with the aim to find a suitable feature subset for automatic classification of heart murmurs. Techniques such as Shannon energy, wavelets, fractal dimensions and recurrence quantification analysis were used to extract 207 features. 157 of these features have not previously been used in heart murmur classification. A multi-domain subset consisting of 14, both old and new, features was derived using Pudil’s sequential floating forward selection (SFFS) method. This subset was compared with several single domain feature sets. Using neural network classification, the selected multi-domain subset gave the best results; 86% correct classifications compared to 68% for the first runner-up. In conclusion, the derived feature set was superior to the comparative sets, and seems rather robust to noisy data.

    Keywords
    Auscultation, Bioacoustics, Feature selection, Heart sounds, Valvular disease
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-13044 (URN)10.1007/s10439-006-9187-4 (DOI)
    Available from: 2008-03-20 Created: 2008-03-20 Last updated: 2021-11-25
    Download full text (pdf)
    FULLTEXT01
  • 3.
    Ahlström, Christer
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Ask, Per
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Rask, Peter
    University Hospital, Örebro, Sweden .
    Karlsson, Jan-Erik
    County Hospital Ryhov, Jönköping, Sweden.
    Nylander, Eva
    Linköping University, Department of Medicine and Care, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart Centre, Department of Clinical Physiology.
    Dahlström, Ulf
    Linköping University, Department of Medicine and Care, Cardiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart Centre, Department of Cardiology.
    Hult, Peter
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Assessment of Suspected Aortic Stenosis by Auto Mutual Information Analysis of Murmurs2007In: Engineering in Medicine and Biology Society, 2007. EMBS 2007, 2007, p. 1945-1948Conference paper (Refereed)
    Abstract [en]

    Mild sclerotic thickening of the aortic valve affects 25% of the population, and the condition causes aortic valve stenosis (AS) in 2% of adults above 65 years. Echocardiography is today the clinical standard for assessing AS. However, a cost effective and uncomplicated technique that can be used for decision support in the primary health care would be of great value. In this study, recorded phonocardiographic signals were analyzed using the first local minimum of the auto mutual information (AMI) function. The AMI method measures the complexity in the sound signal, which is related to the amount of turbulence in the blood flow and thus to the severity of the stenosis. Two previously developed phonocardiographic methods for assessing AS severity were used for comparison, the murmur energy ratio and the sound spectral averaging technique. Twenty-nine patients with suspected AS were examined with Doppler echocardiography. The aortic jet velocity was used as a reference of AS severity, and it was found to correlate with the AMI method, the murmur energy ratio and the sound spectral averaging technique with the correlation coefficient R = 0.82, R = 0.73 and R = 0.76, respectively.

  • 4.
    Ahlström, Christer
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Hult, Peter
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, Faculty of Arts and Sciences.
    Ask, Per
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Detection of the 3(rd) heart sound using recurrence time statistics2006In: 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, Vol. 1-13, p. 2288-2291Conference paper (Refereed)
    Abstract [en]

    The 3(rd) heart sound (S3) is normally heard during auscultation of younger individuals, but it is also common in many patients with heart failure. Compared to the 1(st) and 2(nd) heart sounds, S3 has low amplitude and low frequency content, making it hard to detect (both manually for the physician and automatically by a detection algorithm). We present an algorithm based on a recurrence time statistic which is sensitive to changes in a reconstructed state space, particularly for detection of transitions with very low energy. Heart sound signals from ten children were used in this study. Most S3 occurrences were detected (98%), but the amount of false extra detections was rather high (7% of the heart cycles). In conclusion, the method seems capable of detecting S3 with high accuracy and robustness.

  • 5.
    Ahlström, Christer
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Hult, Peter
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Ask, Per
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Detection of the 3rd Heart Sound using Recurrence Time Statistics2006In: Proc. 31st IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Toulouse, France, 2006, 2006, p. 1040-1043Conference paper (Other academic)
    Abstract [en]

    The 3rd heart sound (S3) is normally heard during auscultation of younger individuals, but it is also common in many patients with heart failure. Compared to the 1st and 2nd heart sounds, S3 has low amplitude and low frequency content, making it hard to detect (both manually for the physician and automatically by a detection algorithm). We present an algorithm based on a recurrence time statistic which is sensitive to changes in a reconstructed state space, particularly for detection of transitions with very low energy. Heart sound signals from ten children were used in this study. Most S3 occurrences were detected (98 %), but the amount of false extra detections was rather high (7% of the heart cycles). In conclusion, the method seems capable of detecting S3 with high accuracy and robustness.

  • 6.
    Ahlström, Christer
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Hult, Peter
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Ask, Per
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Thresholding distance plots using true recurrence points2006In: Acoustics, Speech and Signal Processing, 2006. ICASSP 2006, IEEE , 2006, p. 688-691Conference paper (Refereed)
    Abstract [en]

    Recurrence plots (RP) visualize multi-dimensional state spaces and represent the recurrence of states of a system. Recurrence points can be divided into true recurrence points and false recurrence points (also called sojourn points). We introduce the true recurrence point recurrence plot, TRP, a variant of the traditional RP excluding the sojourn points. This is a cleaned up RP free from recurrence points originating from tangential motion, and hence a more robust representation of unstable periodic orbits. The method is demonstrated with three simple systems, a periodic sine wave, a quasi-periodic torus and the x-component of the chaotic Lorenz system

  • 7.
    Ahlström, Christer
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Hult, Peter
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Ask, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Wheeze analysis and detection with non-linear phase-space embedding2005In: Nordic Baltic Conference Biomedical Engineering and Medical Physics,2005, Umeå: IFMBE , 2005, p. 305-Conference paper (Refereed)
  • 8.
    Ahlström, Christer
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Hult, Peter
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Rask, P
    Karlsson, J-E
    Nylander, Eva
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Clinical Physiology. Östergötlands Läns Landsting, Heart Centre, Department of Clinical Physiology.
    Dahlström, Ulf
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Cardiology. Östergötlands Läns Landsting, Heart Centre, Department of Cardiology.
    Ask, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Using the intelligent stethoscope for extraction of features for systolic heart murmur classification2006In: World Congress on Medical Physics and Biomedical Engineering WC2006,2006, 2006Conference paper (Other academic)
  • 9.
    Ahlström, Christer
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Hult, Peter
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Rask, Peter
    Örebro university.
    Karlsson, Jan-Erik
    Nylander, Eva
    Linköping University, Department of Medicine and Health Sciences, Clinical Physiology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart Centre, Department of Clinical Physiology.
    Dahlström, Ulf
    Linköping University, Department of Medicine and Health Sciences, Cardiology . Linköping University, Faculty of Health Sciences.
    Ask, Per
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Feature Extraction for Systolic Heart Murmur Classification2006In: Annals of Biomedical Engineering, ISSN 0090-6964, E-ISSN 1573-9686, Vol. 34, no 11, p. 1666-1677Article in journal (Refereed)
    Abstract [en]

    Heart murmurs are often the first signs of pathological changes of the heart valves, and they are usually found during auscultation in the primary health care. Distinguishing a pathological murmur from a physiological murmur is however difficult, why an “intelligent stethoscope” with decision support abilities would be of great value. Phonocardiographic signals were acquired from 36 patients with aortic valve stenosis, mitral insufficiency or physiological murmurs, and the data were analyzed with the aim to find a suitable feature subset for automatic classification of heart murmurs. Techniques such as Shannon energy, wavelets, fractal dimensions and recurrence quantification analysis were used to extract 207 features. 157 of these features have not previously been used in heart murmur classification. A multi-domain subset consisting of 14, both old and new, features was derived using Pudil’s sequential floating forward selection (SFFS) method. This subset was compared with several single domain feature sets. Using neural network classification, the selected multi-domain subset gave the best results; 86% correct classifications compared to 68% for the first runner-up. In conclusion, the derived feature set was superior to the comparative sets, and seems rather robust to noisy data.

  • 10.
    Ahlström, Christer
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Hult, Peter
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Schmekel, Birgitta
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Clinical Physiology. Östergötlands Läns Landsting, Heart Centre, Department of Clinical Physiology.
    Ask, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Automatisk detektering av ronki med icke-linjära metoder2004In: Svenska Läkaresällskapets riksstämma,2004, 2004, p. 66-66Conference paper (Other academic)
  • 11.
    Ahlström, Christer
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Hult, Peter
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Schmekel, Birgitta
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Clinical Physiology. Östergötlands Läns Landsting, Heart Centre, Department of Clinical Physiology.
    Ask, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Wheeze detection with nonlinear statespace embedding2004In: International Lung Sound Association,2004, 2004, p. 38-39Conference paper (Other academic)
  • 12.
    Ahlström, Christer
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, Faculty of Health Sciences.
    Höglund, Katja
    Hult, Peter
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, Faculty of Health Sciences.
    Häggström, Jens
    Kvart, Clarence
    Ask, Per
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, Faculty of Health Sciences.
    Assessing Aortic Stenosis using Sample Entropy of the Phonocardiographic Signal in Dogs2008In: IEEE Transactions on Biomedical Engineering, ISSN 0018-9294, E-ISSN 1558-2531, Vol. 55, no 8, p. 2107-2109Article in journal (Refereed)
    Abstract [en]

    In aortic valve stenosis (AS), heart murmurs arise as an effect of turbulent blood flow distal to the obstructed valves. With increasing AS severity, the flow becomes more unstable, and the ensuing murmur becomes more complex. We hypothesize that these hemodynamic flow changes can be quantified based on the complexity of the phonocardiographic (PCG) signal. In this study, sample entropy (SampEn) was investigated as a measure of complexity using a dog model. Twenty-seven boxer dogs with various degrees of AS were examined with Doppler echocardiography, and the peak aortic flow velocity (Vmax) was used as a reference of AS severity. SampEn correlated to Vmax with R = 0.70 using logarithmic regression. In a separate analysis, significant differences were found between physiologic murmurs and murmurs caused by AS (p < 0.05), and the area under a receiver operating characteristic curve was calculated to 0.96. Comparison with previously presented PCG measures for AS assessment showed improved performance when using SampEn, especially for differentiation between physiological murmurs and murmurs caused by mild AS. Studies in patients will be needed to properly assess the technique in humans.

  • 13.
    Ahlström, Christer
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Höglund, Katja
    Dept. of Anatomy and Physiology, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Hult, Peter
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Häggström, Jens
    Dept. of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Kvart, Clarence
    Dept. of Anatomy and Physiology, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Ask, Per
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Distinguishing Innocent Murmurs from Murmurs caused by Aortic Stenosis by Recurrence Quantification Analysis2006In: ROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 18, Canakkale, Turkey: World Academy of Science, Engineering and Technology (W A S E T) , 2006, p. 40-45Conference paper (Refereed)
    Abstract [en]

    It is sometimes difficult to differentiate between innocent murmurs and pathological murmurs during auscultation. In these difficult cases, an intelligent stethoscope with decision support abilities would be of great value. In this study, using a dog model, phonocardiographic recordings were obtained from 27 boxer dogs with various degrees of aortic stenosis (AS) severity. As a reference for severity assessment, continuous wave Doppler was used. The data were analyzed with recurrence quantification analysis (RQA) with the aim to find features able to distinguish innocent murmurs from murmurs caused by AS. Four out of eight investigated RQA features showed significant differences between innocent murmurs and pathological murmurs. Using a plain linear discriminant analysis classifier, the best pair of features (recurrence rate and entropy) resulted in a sensitivity of 90% and a specificity of 88%. In conclusion, RQA provide valid features which can be used for differentiation between innocent murmurs and murmurs caused by AS.

  • 14.
    Ahlström, Christer
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Johansson, Anders
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Hult, Peter
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Ask, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Chaotic dynamics of respiratory sounds2006In: Chaos, Solitons & Fractals, ISSN 0960-0779, E-ISSN 1873-2887, Vol. 29, no 5, p. 1054-1062Article in journal (Refereed)
    Abstract [en]

    There is a growing interest in nonlinear analysis of respiratory sounds (RS), but little has been done to justify the use of nonlinear tools on such data. The aim of this paper is to investigate the stationarity, linearity and chaotic dynamics of recorded RS. Two independent data sets from 8 + 8 healthy subjects were recorded and investigated. The first set consisted of lung sounds (LS) recorded with an electronic stethoscope and the other of tracheal sounds (TS) recorded with a contact accelerometer. Recurrence plot analysis revealed that both LS and TS are quasistationary, with the parts corresponding to inspiratory and expiratory flow plateaus being stationary. Surrogate data tests could not provide statistically sufficient evidence regarding the nonlinearity of the data. The null hypothesis could not be rejected in 4 out of 32 LS cases and in 15 out of 32 TS cases. However, the Lyapunov spectra, the correlation dimension (D2) and the Kaplan-Yorke dimension (DKY) all indicate chaotic behavior. The Lyapunov analysis showed that the sum of the exponents was negative in all cases and that the largest exponent was found to be positive. The results are partly ambiguous, but provide some evidence of chaotic dynamics of RS, both concerning LS and TS. The results motivate continuous use of nonlinear tools for analysing RS data. © 2005 Elsevier Ltd. All rights reserved.

  • 15.
    Ahlström, Christer
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Johansson, Anders
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Länne, Toste
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Clinical Physiology. Östergötlands Läns Landsting, Heart Centre, Department of Thoracic and Vascular Surgery.
    Ask, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    A respiration monitor based on electrocardiographic and photoplethysmographic sensor fusion2004In: IEEE Engineering in Medical and Biological Society,2004, Piscataway, N.J. USA: IEEEEMBS , 2004, p. 2311-Conference paper (Refereed)
  • 16.
    Ahlström, Christer
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Johansson, Anders
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Länne, Toste
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Physiology. Östergötlands Läns Landsting, Heart Centre, Department of Thoracic and Vascular Surgery.
    Ask, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Monitorering av andning and blodtrycksförändringar baserat på EKG och hjärtljud2007In: Medicinteknik dagarna,2007, 2007Conference paper (Other academic)
  • 17.
    Ahlström, Christer
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Johansson, Anders
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Uhlin, Fredrik
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Nephrology.
    Länne, Toste
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Clinical Physiology. Östergötlands Läns Landsting, Heart Centre, Department of Thoracic and Vascular Surgery.
    Ask, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Noninvasive investigation of blood pressure changes using the pulse wave transit time: A novel approach in the monitoring of hemodialysis patients2005In: Journal of Artificial Organs, ISSN 1434-7229, E-ISSN 1619-0904, Vol. 8, no 3, p. 192-197Article in journal (Refereed)
    Abstract [en]

    Severe blood pressure changes are well known in hemodialysis. Detection and prediction of these are important for the well-being of the patient and for optimizing treatment. New noninvasive methods for this purpose are required. The pulse wave transit time technique is an indirect estimation of blood pressure, and our intention is to investigate whether this technique is applicable for hemodialysis treatment. A measurement setup utilizing lower body negative pressure and isometric contraction was used to simulate dialysis-related blood pressure changes in normal test subjects. Systolic blood pressure levels were compared to different pulse wave transit times, including and excluding the cardiac preejection period. Based on the results of these investigations, a pulse wave transit time technique adapted for dialysis treatment was developed and tried out on patients. To determine systolic blood pressure in the normal group, the total pulse wave transit time was found most suitable (including the cardiac preejection period). Correlation coefficients were r = 0.80 ± 0.06 (mean ± SD) overall and r = 0.81 ± 0.16 and r = 0.09 ± 0.62 for the hypotension and hypertension phases, respectively. When applying the adapted technique in dialysis patients, large blood pressure variations could easily be detected when present. Pulse wave transit time is correlated to systolic blood pressure within the acceptable range for a trend-indicating system. The method's applicability for dialysis treatment requires further studies. The results indicate that large sudden pressure drops, like those seen in sudden hypovolemia, can be detected. © The Japanese Society for Artificial Organs 2005.

  • 18.
    Ahlström, Christer
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Liljefeldt, Olle
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
    Hult, Peter
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Ask, Per
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Heart sound cancellation from lung sound recordings using recurrence time statistics and nonlinear prediction2005In: IEEE Signal Processing Letters, ISSN 1070-9908, E-ISSN 1558-2361, Vol. 12, no 12, p. 812-815Article in journal (Refereed)
    Abstract [en]

    Heart sounds (HS) obscure the interpretation of lung sounds (LS). This letter presents a new method to detect and remove this undesired disturbance. The HS detection algorithm is based on a recurrence time statistic that is sensitive to changes in a reconstructed state space. Signal segments that are found to contain HS are removed, and the arising missing parts are replaced with predicted LS using a nonlinear prediction scheme. The prediction operates in the reconstructed state space and uses an iterated integrated nearest trajectory algorithm. The HS detection algorithm detects HS with an error rate of 4% false positives and 8% false negatives. The spectral difference between the reconstructed LS signal and an LS signal with removed HS was 0.34/spl plusmn/0.25, 0.50/spl plusmn/0.33, 0.46/spl plusmn/0.35, and 0.94/spl plusmn/0.64 dB/Hz in the frequency bands 20-40, 40-70, 70-150, and 150-300 Hz, respectively. The cross-correlation index was found to be 99.7%, indicating excellent similarity between actual LS and predicted LS. Listening tests performed by a skilled physician showed high-quality auditory results.

    Download full text (pdf)
    FULLTEXT01
  • 19.
    Ahlström, Christer
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, Faculty of Health Sciences.
    Länne, Toste
    Linköping University, Department of Medicine and Health Sciences, Physiology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart Centre, Department of Thoracic and Vascular Surgery.
    Ask, Per
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, Faculty of Health Sciences.
    Johansson, Anders
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, Faculty of Health Sciences.
    A method for accurate localization of the first heart sound and possible applications2008In: Physiological Measurement, ISSN 0967-3334, E-ISSN 1361-6579, Vol. 29, no 3, p. 417-428Article in journal (Refereed)
    Abstract [en]

    We have previously developed a method for localization of the first heart sound (S1) using wavelet denoising and ECG-gated peak-picking. In this study, an additional enhancement step based on cross-correlation and ECG-gated ensemble averaging (EA) is presented. The main objective of the improved method was to localize S1 with very high temporal accuracy in (pseudo-) real time. The performance of S1 detection and localization, with and without EA enhancement, was evaluated on simulated as well as experimental data. The simulation study showed that EA enhancement reduced the localization error considerably and that S1 could be accurately localized at much lower signal-to-noise ratios. The experimental data were taken from ten healthy subjects at rest and during invoked hyper- and hypotension. For this material, the number of correct S1 detections increased from 91% to 98% when using EA enhancement. Improved performance was also demonstrated when EA enhancement was used for continuous tracking of blood pressure changes and for respiration monitoring via the electromechanical activation time. These are two typical applications where accurate localization of S1 is essential for the results.

    Download full text (pdf)
    FULLTEXT01
  • 20. Andersson, R
    et al.
    Ask, Per
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Force to restore the shape of an asymmetric extracorporeal tube as the basis for non-invasive pressure measurements.2002In: International Journal of Artificial Organs, ISSN 0391-3988, E-ISSN 1724-6040, Vol. 25, no 4, p. 281-289Article in journal (Refereed)
    Abstract [en]

    A zero-balance principle is described where intraluminal pressure is estimated from the counter force needed to restore the tube shape of an elastic extra corporeal tube. The aim was to optimise cross-sectional tube geometry for tube expansion due to pressure and to reduce the sensitivity to variation in mechanical tube characteristics using an experimental statistical and factorial design. The main application is pressure monitoring in blood and dialysate tubes during hemodialysis. Improving the monitoring of the dialysis process will reduce complications, such as sudden decreases in systemic blood pressure or occlusion at the artero-venous fistula. The factorial design indicated strong influence from the geometrical characteristics of the tube as well from the geometrical design parameters of the pressure transducer. We found a consistent relationship between the intraluminal pressure and the applied force needed to restore the tube shape. The modified cross-sectional tube geometry enhances measurement sensitivity and facilitates the desired behavior of tubes during pressure applications.

  • 21. Andersson, R
    et al.
    Loyd, Dan
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, The Institute of Technology.
    Ask, Per
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Pressure sensed non-invasively directly on the extra corporeal bloodline tube2001In: PROCEEDINGS OF THE 23RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4: BUILDING NEW BRIDGES AT THE FRONTIERS OF ENGINEERING AND MEDICINE, 2001, Vol. 23, p. 3179-3181Conference paper (Refereed)
    Abstract [en]

    To clinically measure blood pressure at extra corporeal bloodlines involves a hazard due to the infection risk and a risk for thrombosis formation. The aim was to design a non-invasive pressure sensor, measuring directly on a tube section. A modified tube cross-section was used to improve sensitivity. Using the developed sensing principle, a consistent relation (r=0.999) was obtained between pressure and output signal. The output was stable and an acceptable drift within the temperature-range. The method shows great promise for applications in monitoring of the dialysis process.

  • 22.
    Andersson, Roger
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Ask, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Pressure sensed non-invasively directly on the extracorporeal dialysis tube2001In: ESAO Congress,2001, 2001Conference paper (Other academic)
  • 23.
    Andersson, Roger
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Fridolin, Ivo
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Magnusson, M.
    Lindberg, Lars-Göran
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Measurements of solutes in dialysate using UV-absorption: analysis of the factors influencing correlation between UV-absorption and solutes in the spent dialysate2002Other (Other (popular science, discussion, etc.))
  • 24.
    Andersson, Roger
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Loyd, Dan
    Linköping University, The Institute of Technology. Linköping University, Department of Mechanical Engineering, Applied Thermodynamics and Fluid Mechanics.
    Ask, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Pressure sensed non-invasively directly on the extra corporeal blood line tubes2001In: Int Conference of the IEEE Engineering in Medicine and Biology Society,2001, 2001Conference paper (Refereed)
  • 25.
    Ask, P.
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Carlsson, P.Öberg, P.Å.Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.Pettersson, H.Tibbling, L.Törngren, P.
    An integrating transducer for oesophageal manometry.: The IV Nordic Meeting on Medical and Biological Engineering, Lyngby/Copenhagen, June 29 - July 2 1977.1977Conference proceedings (editor) (Other academic)
  • 26.
    Ask, Per
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    EKG-elektroder: en svag länk vid övervakning1974In: Medicinsk Teknik, ISSN 0346-542X, no 4, p. 12-15Article in journal (Other academic)
  • 27.
    Ask, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    How to assess heart valve function with echocardiography1997In: European Conference on Engineering and Medicine,1997, 1997Conference paper (Refereed)
  • 28.
    Ask, Per
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Low-compliance perfusion pump for oesophageal manometry.1978In: Medical and Biological Engineering and Computing, ISSN 0140-0118, E-ISSN 1741-0444, Vol. 16, no 6, p. 732-738Article in journal (Refereed)
  • 29.
    Ask, Per
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Measurement techniques for urodynamic investigations.1989In: Critical reviews in biomedical engineering, ISSN 0278-940X, E-ISSN 1943-619X, Vol. 17, no 5, p. 413-449Article in journal (Refereed)
    Abstract [en]

    Important measurement techniques for investigating lower urinary tract function are flow and pressure measurements. The demands on urinary flowmeters and the measurement principles of balance type, rotating disc, dipstick, and air-displacement type are described. Urological pressure measurements are performed in the bladder, in the urethra, and in the abdominal cavity. Various fluid-filled and microtransducer systems are reviewed and demands for performance given. Differences in measuring a mechanical pressure, like in the urethra, and a fluid pressure in the bladder are discussed. Electromyography (EMG) technique is used to investigate various neurological disturbances in the lower urinary tract. The electrode technique is also described. Furthermore, techniques for incontinence detection are reviewed.

  • 30.
    Ask, Per
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Brandberg, Joakim
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Janerot-Sjöberg, Birgitta
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Clinical Physiology. Östergötlands Läns Landsting, Heart Centre, Department of Clinical Physiology.
    Karlsson, Matts
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Modelling and Simulation .
    Loyd, Dan
    Linköping University, The Institute of Technology. Linköping University, Department of Mechanical Engineering, Applied Thermodynamics and Fluid Mechanics.
    Wranne, Bengt
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Clinical Physiology. Östergötlands Läns Landsting, Heart Centre, Department of Clinical Physiology.
    Assessment of heart valve function with echocardiography1997In: World Congress on Medical Physics and Biomedical Engineering,1997, 1997, p. 394-394Conference paper (Refereed)
  • 31.
    Ask, Per
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Carlsson, P
    Öberg, Åke
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
    Pettersson, H
    Törngren, P
    Tibbling, Lita
    Feedback system for control of abdominal compression in oesophageal investigations.1981In: Medical and Biological Engineering and Computing, ISSN 0140-0118, E-ISSN 1741-0444, Vol. 19, no 4, p. 501-503Article in journal (Refereed)
  • 32.
    Ask, Per
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Edwall, G
    Johansson, K E
    Accuracy and choice of procedures in 24-hour oesophageal pH monitoring with monocrystalline antimony electrodes.1986In: Medical and Biological Engineering and Computing, ISSN 0140-0118, E-ISSN 1741-0444, Vol. 24, no 6, p. 602-608Article in journal (Refereed)
    Abstract [en]

    In 24 h pH monitoring, the evaluation is dependent on the absolute accuracy of the pH measurements. Several sources of error exist, such as the chemical composition of calibration buffers and reference electrode gel and the effect of temperature on both the pH and the reference electrodes. We investigated the magnitude of these errors for the monocrystalline antimony electrode. Similar analysis applies to other types of pH electrodes. The errors we found are important when choosing a calibration procedure. We recommend a calibration procedure in which the pH and reference electrodes are both put in a beaker with the calibration buffers prior to and after the 24 h measurements. The calibration buffers and the electrode gel should have a specially selected ion composition where, for example, the Cl-ion concentration is critical. Corrections for differences in temperature between the calibration and the in situ measurements must be added. The pH measurements can be checked by performing in situ calibration.

  • 33.
    Ask, Per
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Edwall, G
    Johansson, K E
    Tibbling, Lita
    On the use of monocrystalline antimony pH electrodes in gastro-oesophageal functional disorders.1982In: Medical and Biological Engineering and Computing, ISSN 0140-0118, E-ISSN 1741-0444, Vol. 20, no 3, p. 383-389Article in journal (Refereed)
    Abstract [en]

    Monocrystalline antimony electrodes have been shown to be suitable for thein vivo determination of pH in blood, tissue and in the upper gastro-intestinal canal. Thanks to their small dimensions it has been possible to mount them into conventional manometry catheters for oesophageal investigation. The monocrystalline antimony pH electrode has several advantages over the conventional pH glass electrode; better accuracy, shorter rise time, smaller dimensions. The monocrystalline antimony electrode has been used for long-term registration of gastro-oesophageal reflux, for the oesophageal acid clearing test and for identification of the pH gradient zone between the gastric and oesophageal mucosa. Its use in combination with pressure sensors has added a new dimension to the diagnosis of functional disorders in the gastro-oesophageal region.

  • 34.
    Ask, Per
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Edwall, G
    Tibbling, Lita
    Combined pH and pressure measurement device for oesophageal investigations.1981In: Medical and Biological Engineering and Computing, ISSN 0140-0118, E-ISSN 1741-0444, Vol. 19, no 4, p. 443-446Article in journal (Refereed)
    Abstract [en]

    A combined pH- and pressure-measurement device for oesophageal investigations has been designed using monocrystalline antimony pH electrodes and perfused polyvinyl catheters. The combined device facilitates pressure measurements simultaneously with pH recording, both distal and proximal to the pH electrode. The device is easier to pass through the nose to the oesophagus than the conventional glass pH electrode. pH and pressure measurements in the oesophagus are therefore simplified and valuable information about the function of the region of the lower oesophageal sphincter is added owing to the simultaneous recording of the two parameters.

  • 35.
    Ask, Per
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    EDWALL, G
    Tibbling, Lita
    ESOPHAGEAL PH MEASUREMENTS USING AN ANTIMONY ELECTRODE1980In: Medical and Biological Engineering and Computing, ISSN 0140-0118, E-ISSN 1741-0444, Vol. 18, no 1Article in journal (Refereed)
  • 36.
    Ask, Per
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Ekstrand, Kristina
    Katrineholm City, Sweden.
    Hult, Peter
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Lindén, Maria
    Mälardalen University, Västerås, Sweden.
    Pettersson, Nils-Erik
    Örebro County Council, Sweden.
    NovaMedTech - a regional program for supporting new medical technologies in personalized health care2012In: Studies in Health Technology and Informatics, ISSN 0926-9630, E-ISSN 1879-8365, Vol. 177, p. 71-5Article in journal (Refereed)
    Abstract [en]

    NovaMedTech is an initiative funded from EU structural funds for supporting new medical technologies for personalized health care. It aims at bringing these technologies into clinical use and to the health care market. The program has participants from health care, industry and academia in East middle Sweden. The first three year period of the program was successful in terms of product concepts tried clinically, and number of products brought to a commercialization phase. Further, the program has led to a large number of scientific publications. Among projects supported, we can mention: Intelligent sensor networks; A digital pen to collect medical information about health status from patients; A web-based intelligent stethoscope; Methodologies to measure local blood flow and nutrition using optical techniques; Blood flow assessment from ankle pressure measurements; Technologies for pressure ulcer prevention; An IR thermometer for improved accuracy; A technique that identifies individuals prone to commit suicide among depressed patients; Detection of infectious disease using an electronic nose; Identification of the lactate threshold from breath; Obesity measurements using special software and MR camera; and An optical probe guided tumor resection. During the present three years period emphasis will be on entrepreneurial activities supporting the commercialization and bringing products to the market.

  • 37.
    Ask, Per
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Enberg, Anders
    Öberg, Åke
    Spånberg, Anders
    A SHORT-TIME-DELAY URINARY FLOWMETER1985In: Neurourology and Urodynamics, ISSN 0733-2467, E-ISSN 1520-6777, Vol. 4, no 3, p. 247-256Article in journal (Refereed)
    Abstract [en]

    A urinary flowmeter has been designed, using a quickly rotating disc and a balance principle. The flowmeter has a fast and accurate response to changing flows. The time delay of the flowmeter is less than about 0.25 s. The improved accuracy in recording urinary flow using the presented flowmeter should make it possible to extract more information from the detrusor pressure and urinary flow relations, relevant for assessing lower urinary tract function.

  • 38.
    Ask, Per
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    ENGVALL, J
    Loyd, Dan
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, The Institute of Technology.
    Wranne, Bengt
    Linköping University, Department of Medicine and Care, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    THEORETICAL AND EXPERIMENTAL-ANALYSIS OF AORTIC COARCTATION1989In: IMAGES OF THE TWENTY-FIRST CENTURY, PTS 1-6, 1989, Vol. 11, p. 103-103Conference paper (Refereed)
    Abstract [en]

    Aortic coarctation, which could severely influence the haemodynamic conditions of the body, is discussed. A theory has been developed which relates the pressure drop over the coarctation to the flow. This theory indicates that the pressure drop across the actual coarctation is related to the flow squared. For the collateral flow the expected pressure drop is either linearly or quadratically related to the flow. Model experiments and patient data support the present theoretical model

  • 39.
    Ask, Per
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Flaschemkampf, F
    Hasenkam, M
    Non-invasive approach to hemodynamic assessment of heart valves (INVADYNE)1997In: World congress on Medical Physics and Biomedical Engineering,1997, 1997, p. 1186-Conference paper (Refereed)
  • 40.
    Ask, Per
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Hult, Peter
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, Faculty of Arts and Sciences.
    Fjallbrant, T
    Wranne, Bengt
    Linköping University, Department of Medicine and Care, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Bioacoustic techniques is applicable to primary health care2001In: PROCEEDINGS OF THE 23RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4: BUILDING NEW BRIDGES AT THE FRONTIERS OF ENGINEERING AND MEDICINE, 2001, Vol. 23, p. 1911-1914Conference paper (Refereed)
    Abstract [en]

    The stethoscope has been used diagnostically for nearly two hundred years to assess the heart function. We can envision the intelligent stethoscope which combines the advantages of the traditional instrument with advanced functionality for analysis of the signal and other information support. The bioacoustic technique is basically simple and robust and fits therefore into a scenario where investigations are performed in a distributed health care system as in primary health care or even home health care. We have focused on detection of respiratory sounds and third heart sounds. The later is performed with a new wavelet technique which makes it possible to automatically detect and identify the sounds and possibly relate them to myocardial insufficiency.

  • 41.
    Ask, Per
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Hägglund, Sture
    Linköping University, The Institute of Technology. Linköping University, Department of Computer and Information Science, ASLAB - Application Systems Laboratory.
    Olsson, J.
    Pettersson, N-E
    Sjöqvist, Bengt Arne
    Åhlfeldt, Hans
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Medical Informatics.
    3G-satsning och 'pensionärsdatorer' kan lösa hälso- och sjukvårdens problem2003In: Läkartidningen, ISSN 0023-7205, E-ISSN 1652-7518, Vol. 100, p. 1257-1258Article in journal (Other academic)
  • 42.
    Ask, Per
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Hägglund, Sture
    Linköping University, Department of Computer and Information Science, Human-Centered systems. Linköping University, The Institute of Technology.
    Olsson, Jan
    Linköping University, Department of Management and Engineering. Linköping University, Faculty of Arts and Sciences.
    Pettersson, Nils-Erik
    Sjöqvist, Bengt-Arne
    Åhlfeldt, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    36-nätet och "pensionärsdatorer" kan bidra till att lösa sjukvårdens problem2003In: Läkartidningen, ISSN 0023-7205, E-ISSN 1652-7518, Vol. 100, no 14, p. 1257-1258Article in journal (Refereed)
  • 43.
    Ask, Per
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Hök, B
    Loyd, Dan
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, The Institute of Technology.
    Teriö, H
    Bio-acoustic signals from stenotic tube flow: state of the art and perspectives for future methodological development.1995In: Medical and Biological Engineering and Computing, ISSN 0140-0118, E-ISSN 1741-0444, Vol. 33, no 5, p. 669-675Article in journal (Refereed)
    Abstract [en]

    To study the degree of stenosis from the acoustic signal generated by the turbulent flow in a stenotic vessel, so-called phonoangiography was first suggested over 20 years ago. A reason for the limited use of the technique today may be that, in the early work, the theory of how to relate the spectrum of the acoustic signal to the degree of the stenosis was not clear. However, during the last decade, the theoretical basis for this and other biological tube flow applications has been clarified. Now there is also easy access to computers for frequency analysis. A further explanation for the limited diagnostic use of bio-acoustic techniques for tube flow is the strong competition from ultrasound Doppler techniques. In the future, however, applications may be expected in biological tube flow where the non-invasive, simple and inexpensive bio-acoustic techniques will have a definite role as a diagnostic method.

  • 44.
    Ask, Per
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Hök, Bertil
    PRESSURE MEASUREMENT TECHNIQUES IN URODYNAMIC INVESTIGATIONS1990In: Neurourology and Urodynamics, ISSN 0733-2467, E-ISSN 1520-6777, Vol. 9, no 1, p. 1-15Article in journal (Refereed)
    Abstract [en]

    It is apparent that the use of accurate pressure measurement techniques is essential for the outcome of urodynamic investigations. The aim of this paper is to estimate the demands on urodynamic pressure measurements and to review the properties of various techniques used. For the infused catheter technique, the dynamic properties are very much dependent on the complicance of the infusion system. With optimal infusion, the bandwidth and the pressure rise rate seem to be sufficient for most applications. Intraluminal microtransducers have a high bandwidth, but a certain fiber optic transducer cannot accurately measure mechanical pressure in the collapsed urethra. The principal differences in measuring hydrostatic pressure between the infused catheter technique and microtransducers should be observed. Flexion artefacts are a problem when measuring urethral pressure profiles. Newly developed transducers may offer a solution to this problem.

  • 45.
    Ask, Per
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Hök, Bertil
    Loyd, Dan
    Linköping University, The Institute of Technology. Linköping University, Department of Mechanical Engineering, Applied Thermodynamics and Fluid Mechanics.
    Teriö, Heikki
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Bioacoustic signals from stenotic tube flow1995In: Medical & Biological Engineering & Computing, ISSN 0140-0118, Vol. 33, p. 669-675Article in journal (Refereed)
  • 46.
    Ask, Per
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Levitan, H
    Robinson, P J
    Rapoport, S I
    Peripheral nerve as an osmometer: role of the perineurium in frog sciatic nerve.1983In: American Journal of Physiology, ISSN 0002-9513, E-ISSN 2163-5773, Vol. 244, no 1, p. C75-81Article in journal (Refereed)
    Abstract [en]

    Measurements of volume and hydrostatic pressure in the frog sciatic nerve in vitro demonstrate that the nerve acts as an osmometer, in large part because the perineurium is a semipermeable membrane for water flow. Endoneurial hydrostatic pressure in nerves in isotonic Ringer exceeds bath pressure by about 7 mmHg. In Ringer made hypertonic by addition of sucrose, nerve volume and endoneurial pressure fall linearly in relation to 1/osmolality. The slope of the plot of pressure against volume provides a value for nerve compliance equal to 0.006 mm2/mmHg. Calculations based on the model of the nerve as an osmometer indicate that the nerve has an osmotically "inactive" volume equal to 0.19 mm3/mm, which is about 75% of the total volume of a nerve segment of unit length in normal Ringer. Perineurial hydraulic conductivity (Lp) equals 7.5 x 10(-13) cm3.s-1.dyn-1, a value characteristic of nonleaky epithelia. The perineurium is an elastic tissue with a constant modulus of elasticity equal to 3 x 10(6) dyn/cm2 when not markedly stretched and may limit nerve swelling under pathological conditions of nerve edema.

  • 47.
    Ask, Per
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Loyd, Dan
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, The Institute of Technology.
    Wranne, Bengt
    Linköping University, Department of Medicine and Care, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Regurgitant flow through heart valves: a hydraulic model applicable to ultrasound Doppler measurements.1986In: Medical and Biological Engineering and Computing, ISSN 0140-0118, E-ISSN 1741-0444, Vol. 24, no 6, p. 643-646Article in journal (Refereed)
  • 48.
    Ask, Per
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Pettersson, N-E
    n/a.
    Andersson, K
    n/a.
    Certification of Clinical Engineers in Sweden2009In: WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 12, ISSN 1680-0737, Vol. 25, no 12, p. 430-431Article in journal (Refereed)
    Abstract [en]

    The Swedish Society for Biomedical Engineering and Physics have certified clinical engineers since 1994. The certification is done on tow levels: Master of science and Bachelor of science. We have in total had 614 applications and certified 341 engineers We have certified a total of 341 persons of which 75 are at the master level and 266 at the bachelor level. We are pleased to note that through the years so many engineers have applied and have get a certification. The interest for applying was very large in the beginning but decreased after some years.

  • 49.
    Ask, Per
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Ressner, Marcus
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements.
    Janerot-Sjöberg, Birgitta
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Clinical Physiology. Östergötlands Läns Landsting, Heart Centre, Department of Clinical Physiology.
    Jansson, Tomas
    Lunds universitet .
    Jurkonis, Rytis
    Kaunas University of Technology, Lithuania .
    Kvikliene, Adriana
    Kaunas University of Technology, Lithuania .
    Hoff, Lars
    Fac of Sience and Engineering, Vestfold University, Horten, Norge .
    Simulation of ultrasound contrast bubble response and the non-linear ultrasound field - combining with in vitro experiments2003In: New England Doppler Conference,2003, 2003Conference paper (Refereed)
  • 50.
    Ask, Per
    et al.
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Skogh, Marcus
    Öberg, Åke
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Elektriska och mekaniska egenskaper hos EKG-elektroder1974Conference paper (Other academic)
1234567 1 - 50 of 340
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf