liu.seSearch for publications in DiVA
Change search
Refine search result
12 1 - 50 of 79
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alm-Carlsson, Gudrun
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Bergman, Ronny
    Harms-Ringdahl, Mats
    Swarén, Ulla
    The Swedish ICRP Project (SwIP) : a radiological protection policy under discussion2002Report (Other academic)
  • 2.
    Andersson-Engels, Stefan
    et al.
    Inst för fysik Lunds Tekniska Högskola.
    Pålsson, S
    Backlund, Erik Olof
    IMT LiU.
    Sturnegk, Patrik
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Neurosurgery. Östergötlands Läns Landsting, Reconstruction Centre, Department of Neurosurgery UHL.
    Lundberg, Peter
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Smedby, Örjan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology UHL. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Svanberg, K
    Eriksson, Ola
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Wårdell, Karin
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    ALA-PpIX Fluorescence and spectroscopy in connection with stereotactic biopsy of human glioblastomas2005In: European Conference on Biomedical Optics,2005, 2005Conference paper (Refereed)
  • 3.
    Bahar Gogani, Jalil
    et al.
    Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Surgery in Östergötland. Linköping University, Faculty of Health Sciences.
    Hägglund, P
    Wickman, G
    Assessment of correlated dose and sensitivity profiles on a multi-slice CT scanner2005In: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 114, no 1-3, p. 332-336Article in journal (Refereed)
    Abstract [en]

    In the case of computed tomography (CT) scanners as well as other imaging techniques utilising ionising radiation, it is imperative that radiation is confined to the sensitive part of the image detector. Assuring this for a CT scanner requires detailed information about the scanner dose and sensitivity profiles and their spatial correlation. The profiles should ideally be co-centric and tightly fit to each other. Ensuring this inherent performance of the scanner can be seen as one of the fundamental steps in optimising diagnostic examinations with CT. A measurement device using a dedicated liquid ionisation chamber is employed to investigate the performance of a Toshiba Aquilion 16 scanner in this aspect. Dose profile and sensitivity profile pairs for four collimations are presented where each pair of profiles are spatially correlated to each other. The measurement device can be applied to any scanner for fast and accurate assessment of dose and sensitivity profiles and their spatial correlation. © The Author 2005. Published by Oxford University Press. All rights reserved.

  • 4.
    Borg, Roger
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Surgery in Östergötland.
    Ekberg, Stefan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Improved dose planning with image fusion2004In: European Association of Nuclear Medicine,2004, 2004Conference paper (Other academic)
  • 5.
    Börjesson, L.
    et al.
    Linköping University, Department of Neuroscience and Locomotion, Neurology. Linköping University, Faculty of Health Sciences.
    Stockhaus, J.
    Linköping University, Department of Neuroscience and Locomotion, Neurology. Linköping University, Faculty of Health Sciences.
    Gauffin, Helena
    Linköping University, Department of Neuroscience and Locomotion, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Ragnehed, Mattias
    Linköping University, Department of Medicine and Care, Medical Radiology. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Söderfeldt, Birgitta
    Linköping University, Department of Neuroscience and Locomotion, Neurology. Linköping University, Faculty of Health Sciences.
    Comparison between fMRI and Wada test2004In: Epilepsia, ISSN 0013-9580, E-ISSN 1528-1167, Vol. 45, no Suppl. 3, p. 84-84Article in journal (Refereed)
    Abstract [en]

    Purpose: Language lateralisation in patients with epilepsy is more often atypical compared to a normal population. The Wada procedure for testing language and memory has some shortcomings; it is invasive and there is always a risk that the patient becomes too sedated, leading to difficulties in performing the tests. fMR1have shown promising results, showing good correlation to the Wadaprocedure concerning language-lateralisation. The aim of this studywas to investigate if fMRI could be used to determine which hemisphere was language dominant and compare the fMR1 results with the Wada-tests with a focus on patients with a complicated lateralisation.

    Method: 4 subjects were tested and they had a heterogeneous (I left handed, I ambidexter and 2 right handed) lateralisation and one had a severe dyslexia. A standard Wada procedure was used and compared with a fMRl investigation using a language paradigm.

    Results: The patients studied showed different language lateralisation patterns (2 left hemisphere and 2 bilateral). In two patients the two tests were fully concordant, in the others the fMRI showed a more bilateral pattern.

    Conclusion: fMR1 adds valuable information in the pre-surgical investigation for patients with a complex language lateralisation.

  • 6.
    Carlsson, C.A.
    et al.
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Lund, Eva
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Pettersson, Håkan
    Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Matscheko, G.
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    An instrument for measuring ambient dose equivalent, H*(10)1996In: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 67, no 1, p. 33-39Article in journal (Refereed)
    Abstract [en]

    The design and calibration of a small and simple instrument for measuring the ambient dose equivalent, H*(10), in photon fields is described. Comprising a thermoluminescence LiF dosemeter inside a 20 mm diameter PMMA sphere, it is capable of measuring the ambient dose equivalent with a nearly isotropic response. In the interval 0.1-100 mSv and for the energy range 30 keV to 1.25 MeV the energy response is within -31% and +15% relative to that of 137Cs gamma radiation (662 keV). In practical use, it is therefore sufficient to calibrate the instrument in a 137Cs gamma field using the corresponding conversion coefficient H*(10)/Kair taken from tabulations. The possibility of using the instrument to monitor the ambient dose equivalent for energies above 1.25 MeV is discussed and indicates that the range of applicability can be extended to 4.4 MeV with an energy response within -10% relative to 662 keV.

  • 7.
    Carlsson Tedgren, Åsa
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics.
    Ahnesjö, A
    Nucletron Scandinavia AB Uppsala and Department of Oncology, .
    Optimization of the computational efficiency of a 3D, collapsed cone dose calculation algorithm for brachytherapy2006In: Radiotherapy and Oncology ESTRO 25,2006, 2006, p. S197-S197Conference paper (Other academic)
    Abstract [en]

          

  • 8. Dance, D
    et al.
    Hunt, R
    Bakic, P
    Maidment, A
    Sandborg, Michael
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Ullman, Gustaf
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics.
    Alm-Carlsson, Gudrun
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Breast dosimetry using high-resolution voxel phantoms2005In: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 114, no 1-3, p. 359-363Article in journal (Refereed)
    Abstract [en]

    A computer model of X-ray mammography has been developed, which uses quasi-realistic high-resolution voxel phantoms to simulate the breast. The phantoms have 400 μm voxels and simulate the three-dimensional distributions of adipose and fibroglandular tissues, Cooper's ligaments, ducts and skin and allow the estimation of dose to individual tissues. Calculations of the incident air kerma to mean glandular dose conversion factor, g, were made using a Mo/Mo spectrum at 28 kV for eight phantoms in the thickness range 40-80 mm and of varying glandularity. The values differed from standard tabulations used for breast dosimetry by up to 43%, because of the different spatial distribution of glandular tissue within the breast. To study this further, additional voxel phantoms were constructed, which gave variations of between 9 and 59% compared with standard values. For accurate breast dosimetry, it is therefore very important to take the distribution of glandular tissues into account. © The Author 2005. Published by Oxford University Press. All rights reserved.

  • 9.
    Dance, David
    et al.
    Royal Marsden NHS Trust.
    Lester, Sonia
    n/a.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Faculty of Health Sciences.
    Sandborg, Michael
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Center for Medical Image Science and Visualization, CMIV. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Faculty of Health Sciences.
    Persliden, Jan
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences.
    The use of carbon fibre material in radiographic cassettes: estimation of the dose and contrast advantages1997In: British Journal of Radiology, ISSN 0007-1285, E-ISSN 1748-880X, Vol. 70, p. 383-390Article in journal (Refereed)
    Abstract [en]

    A Monte Carlo simulation has been used to estimate the dose and contrast advantages of replacing radiographic cassette fronts fabricated from aluminium with cassette fronts fabricated from low atomic number material (carbon fibre). The simulation used a realistic imaging geometry and calculations were made both with and without an anti-scatter grid. Account was taken of the scatter generated in the cassette front and the effect of beam hardening on primary contrast. Dose and contrast were evaluated for a range of cassette front thicknesses and tube potentials (60-150 kV) as well as for four examinations representative of situations with varying amounts of scatter. The results with an anti-scatter grid show a clear dose and contrast advantage in all cases when an aluminium cassette front is replaced with a low attenuation cassette front. The contrast advantage is dependent upon the examination and is generally greater for imaging bony structures than for imaging soft tissue. If a 1.74 mm aluminium cassette front is compared with a 1.1 mm carbon fibre cassette front, then the dose advantages are 16%, 9%, 8% and 6% and the contrast advantages are 10%, 7%, 4% and 5% for the AP paediatric pelvis examination at 60 kV, the anteroposterior (AP) lumbar spine examination at 80 kV, the lateral lumbar spine examination at 100 kV and the posteroanterior (PA) chest examination at 150 kV, respectively. The results without an anti-scatter grid show an increased dose advantage when a low attenuation cassette front is used, but the contrast advantage is small and in some situations negative.

  • 10.
    Ekberg, Stefan
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Olsson, Anna
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics.
    Hellerström, Sabine
    Linköping University, Department of Medicine and Care, Clinical Physiology. Östergötlands Läns Landsting, Heart Centre, Department of Cardiology.
    Quality control of gamma cameras with statistical process control2004In: European Association of Nuclear Medicine,2004, 2004Conference paper (Other academic)
  • 11.
    Engström, Maria
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Ragnehed, Mattias
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Lundberg, Peter
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Axelsson Söderfeldt, Birgitta
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Neurology. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Paradigm design of sensory–motor and language tests in clinical fMRI2004In: Neurophysiologie clinique, ISSN 0987-7053, E-ISSN 1769-7131, Vol. 34, no 6, p. 267-277Article in journal (Refereed)
    Abstract [en]

    Functional magnetic resonance imaging (fMRI) paradigms on sensory–motor and language functions are reviewed from a clinical user’s perspective. The objective was to identify special requirements regarding the design of fMRI paradigms for clinical applications. A wide range of methods for setting up fMRI examinations were found in the literature. It was concluded that there is a need for standardised procedures adapted for clinical settings. Sensory–motor activation patterns do not vary much at different hand motion tasks. Nevertheless it is one of the most important clinical tests. In contrast, the language system is much more complex. In several studies it has been observed that word production tasks are preferable in determination of language lateralisation. Broca’s area is activated by most tasks, whereas sentence processing and semantic decision also involve activation in temporoparietal and frontal areas. However, combined task analysis (CTA) of several different tasks has been found to be more robust and reliable for clinical fMRI compared to separate task analysis.

  • 12.
    Eriksson, Ola
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Backlund, Erik Olof
    Lindstam, Håkan
    Lundberg, Peter
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Lindström, Sivert
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Division of cell biology.
    Wårdell, Karin
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Stereotactic RF-lesioning - A study in the pig brain2000In: Scandinavian Neurosurgical Society Meeting,2000, 2000Conference paper (Refereed)
  • 13.
    Eriksson, Ola
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Backlund, Erik-Olof
    Linköping University, Department of Neuroscience and Locomotion, Neurosurgery. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lindstam, Håkan
    Linköping University, Department of Medicine and Care, Radiology. Linköping University, Faculty of Health Sciences.
    Lindström, Sivert
    Linköping University, Department of Biomedicine and Surgery, Cell biology. Linköping University, Faculty of Health Sciences.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Experimental radiofrequency brain lesions: a volumetric study2002In: Neurosurgery, ISSN 0148-396X, E-ISSN 1524-4040, Vol. 51, no 3, p. 781-788Article in journal (Refereed)
    Abstract [en]

    OBJECTIVE : This study describes the production, under strictly standardized and controlled conditions, of radiofrequency lesions with identical neurogenerator settings: in vitro in two different albumin solutions (nongelatinous and gelatinous) and in vivo in the thalamus of the pig.

    METHODS : The radiofrequency lesions were investigated in vitro by the use of a specially designed video system and in vivo by magnetic resonance imaging. Moreover, the size of the in vivo lesions was estimated with the use of histological sectioning. The statistical analysis included the calculation of a correlation coefficient for the length, width, and volume for each lesion estimation.

    RESULTS : A high correlation (R = 0.96, P < 0.005; n = 14) was found between clot sizes in the two albumin solutions. Albumin clots generated in gelatinous albumin showed systematically larger volumes. In the pig, two concentric zones were seen in all magnetic resonance images and all histological preparations. The width correlation of the completely coagulated brain tissue (inner zones) was R = 0.94, P < 0.005, and n = 7. The corresponding correlation between magnetic resonance images and gelatinous albumin was R = 0.93, P < 0.005, and n = 7. As a rule, the in vitro clots were smaller than the outer zone but larger than the inner zone of the magnetic resonance imaging-recorded lesions for all of the electrode and temperature combinations tested. In vivo lesions generated with the same electrode and parameter settings showed high reproducibility.

    CONCLUSION : The value of presurgical electrode tests to validate the electrode function and lesion size in vitro has become evident in this study, which shows a high correlation between the in vitro albumin clots and the in vivo lesions observed on magnetic resonance images.

  • 14.
    Fransson, Sven Göran
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiology. Östergötlands Läns Landsting, Heart Centre, Department of Cardiology.
    Sandborg, Michael
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Petterson, Håkan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Stråldoser till patienter och personal vid kranskärlsröntgen och intervention vua radialis resptektive femoralispunktion.2003In: Svensk förening för medicinsk radiologi förhandlingar 2003,2003, 2003, p. 25-26Conference paper (Refereed)
  • 15.
    Friman, Ola
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Medical Informatics.
    Borga, Magnus
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Medical Informatics.
    Lundberg, Peter
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Knutsson, Hans
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Medical Informatics.
    Canonical correlation as a tool in functional MRI data analysis2001In: SSAB Symposium on Image Analysis,2001, 2001Conference paper (Other academic)
  • 16.
    Friman, Ola
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Borga, Magnus
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Lundberg, Peter
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Hierarchical temporal blind source separation of fMRI data2002In: Proceedings of the ISMRM Annual Meeting (ISMRM'02), 2002Conference paper (Refereed)
    Abstract [en]

    Blind Source Separation (BSS) of fMRI data can be done both temporally and spatially. Temporal BSS of fMRI data has one fundamental problem not encountered in the spatial BSS approach. There are thousands of observed timecourses in an fMRI data set while the number of samples of each timecourse typically is less than two hundred. This re lation makes the problem of recovering the underlying temporal sources ill-posed. This contribution eliminates this problem by introducing a hierarchical approach for performing temporal BSS of fMRI data.

  • 17. Geijer, H
    et al.
    Persliden, Jan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Radiation exposure and patient experience during percutaneous coronary intervention using radial and femoral artery access2004In: European Radiology, ISSN 0938-7994, E-ISSN 1432-1084, Vol. 14, no 9, p. 1674-1680Article in journal (Refereed)
    Abstract [en]

    The aim of this study was to evaluate radiation dose and patient discomfort/pain in radial artery access vs femoral artery access in percutaneous coronary intervention (PCI). Dose-area product (DAP) was measured non-randomised for 114 procedures using femoral access and for 55 using radial access. The patients also responded to a questionnaire concerning discomfort and pain during and after the procedure. The mean DAP was 69.8 Gy cm2 using femoral access and 70.5 Gy cm2 using radial access. Separating the access site from confounding factors with a multiple regression, there was a 13% reduction in DAP when using radial access (p=0.038). Procedure times did not differ (p=0.81). Bed confinement was much longer in the femoral access group (448 vs 76 min, p=0.000). With femoral access, there was a significantly higher patient grading for chest (p=0.001) and back pain (p=0.003) during the procedure and for access site (p=0.000) and back pain (p=0.000) after the procedure. Thirty-two femoral access patients (28%) were given morphine-type analgesics in the post-procedure period compared to three radial access patients (5%, P=0.001). DAP does not increase when using radial instead of femoral access and the patients grade discomfort and pain much lower when using radial access. Radial access is thus beneficial to use.

  • 18. Geijer, H
    et al.
    Persliden, Jan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Varied tube potential with constant effective dose at lumbar spine radiography using a flat-panel digital detector2005In: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 114, no 1-3, p. 240-245Article in journal (Refereed)
    Abstract [en]

    The purpose of the study was to evaluate the image quality at different tube potential (kV) settings using anteroposterior lumbar spine radiography as a model. An Alderson phantom was used with a flat-panel detector. The tube potential varied between 48 and 125 kV while the tube charge (mAs) was adjusted to keep an effective dose of 0.11 mSv. Image quality was assessed with a visual grading analysis and with a CDRAD contrast-detail phantom together with a computer program. The VGA showed inferior image quality for the higher kV settings, ≥ 96 kV with similar results for the contrast-detail phantom. When keeping the effective dose fixed, it seems beneficial to reduce kV to get the best image quality despite the fact that the mAs is not as high as with automatic exposure. However, this cannot be done with automatic exposure, which is set for a constant detector dose.

  • 19.
    Gustafsson, M C
    et al.
    Linköping University, Department of Neuroscience and Locomotion, Neurology. Linköping University, Faculty of Health Sciences.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Jaworski, J
    Linköping University, Department of Neuroscience and Locomotion, Neurology. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Department of Medicine and Care, Radiology. Linköping University, Department of Medicine and Care, Center for Medical Image Science and Visualization. Linköping University, Faculty of Health Sciences.
    Landtblom, Anne-Marie
    Linköping University, Department of Neuroscience and Locomotion, Neurology. Linköping University, Faculty of Health Sciences.
    Low Choline Concentrations in Normal-Appearing White Matter of Patients with Multiple Sclerosis and Normal MR Imaging Brain Scans2007In: American Journal of Neuroradiology, ISSN 0195-6108, E-ISSN 1936-959X, Vol. 28, no 7, p. 1306-1312Article in journal (Refereed)
    Abstract [en]

    BACKGROUND AND PURPOSE: Spectroscopic studies (1H-MR spectroscopy) of normal-appearing white matter (NAWM) in patients with multiple sclerosis (MS) with MR imaging brain lesions have already been performed, but our intention was to investigate NAWM in MS patients who lack brain lesions to elucidate whether the same pathologic changes could be identified.

    MATERIALS AND METHODS: We checked 350 medical files of patients with MS who are registered in our institution. Fourteen patients (11 women and 3 men; mean age, 48.6 years; handicap score, Expanded Disability Status Scale [EDSS] 2.9; range, 1–6.5) with clinically definite MS and a normal MR imaging of the brain were included. 1H-MR spectroscopy was performed in 4 voxels (size approximately 17 × 17 × 17 mm3) using absolute quantification of metabolite concentrations. Fourteen healthy control subjects (11 women and 3 men; mean age, 43.3 years) were analyzed in the same way.

    RESULTS: Significant differences in absolute metabolite concentrations were observed, with the patients with MS showing a lower total concentration of N-acetyl compounds (tNA), including N-acetylaspartate and N-acetyl aspartylglutamate (13.5 mmol/L versus 14.6 mmol/L; P = .002) compared with the healthy control subjects. Unexpectedly, patients with MS presented significantly lower choline-containing compounds (Cho) compared with healthy control subjects (2.2 mmol/L versus 2.4 mmol/L; P < .001). The EDSS showed a positive correlation to myo-inositol concentrations (0.14 mmol/L per EDSS; r2 = 0.06) and a negative correlation to tNA concentrations (−0.41 mmol/L per EDSS; r2 = 0.22).

    CONCLUSION: The unexpected finding of lower Cho concentrations has not been reported previously. We suggest that patients with MS who lack lesions in the brain constitute a separate entity and may have increased protective or healing abilities.

  • 20.
    Gårdestig, Magnus
    et al.
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Helmrot, Ebba
    Linköping University, Department of Medicine and Care, Medical Radiology. Linköping University, Faculty of Health Sciences. Jönköping County Hospital.
    Sandborg, Michael
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Nilsson Althén, Jonas
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Bahar Gogani, Jalil
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Pettersson, Håkan BL
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Estimations of effective dose in X-ray examinations derived from information stored in PACS2005In: Radiological Protection in Transition: Proceedings of the XIV Regular Meeting of the Nordic Society for Radiation Protection, NSFS, Stockholm: Statens Strålskyddsinstitut , 2005, p. 175-178Conference paper (Other academic)
    Abstract [en]

    Information about each X-ray examination, in a modern digitized X-ray department is generated and stored in a PACS. Appropriate conversion factors, e.g. E/DAP, can be applied to separate projections and summed to the total effective dose for each examination. The objectives of the work were (i) to investigate the accuracy and precision in the calculated effective dose (ii) to identify data for registration of (1) patient dose, (2) exposure data, and (3) patient information (iii) to make it possible to derive dose statistics on patient level for documentation of diagnostic standard doses, optimizations, constancy checks, and future epidemiological studies. The effective doses were calculated using Monte Carlo based computer programs or by using tabulations. Conversion factors were calculated for different levels of information and the individual effective dose was compared to the most precise estimation. The results suggest that the accuracy in the estimations of effective dose increases by added information about the patient (gender, size) and how the examination was performed.

  • 21.
    Hedtjärn, Håkan
    et al.
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Williamson, Jeffrey
    Radiation Oncology Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, USA .
    Accelerated Monte Carlo based dose calculations for brachytherapy planning using correlated sampling2002In: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 47, no 3, p. 351-376Article in journal (Refereed)
    Abstract [en]

    Current brachytherapy dose calculations ignore applicator attenuation and tissue heterogeneities, assuming isolated sources embedded in unbounded medium. Conventional Monte Carlo (MC) dose calculations, while accurate, are too slow for practical treatment planning. This study evaluates the efficacy of correlated sampling in reducing the variance of MC photon transport simulation in typical brachytherapy geometries. Photon histories were constructed in the homogeneous geometry and weight correction factors applied to account for the perturbing effect of heterogeneities. Two different estimators, expected value track-length (ETL) and analogue (ANL), were used. The method was tested for disc-shaped heterogeneities and point-isotropic sources as well as for a model 6702 125I seed. Uncorrelated ETL estimation was 10–100 times more efficient than its ANL counterpart. Correlated ETL estimation offered efficiency gains as large as 104 in regions where dose perturbations are small (<5%). For perturbations of 40–50%, efficiency gains were in some cases even less than unity. However, correlated ETL was capable of producing less than 2% (1 standard deviation) uncertainty in more than 90% of the voxels in 1 CPU hour. Correlated sampling significantly improves efficiency under selected circumstances and, in combination with other variance reduction strategies, may make MC-based treatment planning a reality for brachytherapy.

  • 22.
    Hedtjärn, Håkan
    et al.
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Williamson, Jeffrey
    Radiation Oncology Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, USA.
    Monte Carlo-aided dosimetry of the symmetra model I25.S06 125I, interstitial brachytherapy seed2000In: Medical physics (Lancaster), ISSN 0094-2405, Vol. 27, no 5, p. 1076-1085Article in journal (Refereed)
    Abstract [en]

    A dosimetric study of a new 125I seed for permanent prostate implant, the Symmetra 125I Seed model I25.S06, has been undertaken utilizing Monte Carlo photon transport calculations. All dosimetric quantities recommended by the AAPM Task Group 43 (TG-43) report have been calculated. Quantities determined are dose rate constant, radial dose function, anisotropy function, anisotropy factor, and anisotropy constant. The recently (January 1999) revised NIST (National Institute of Standards and Technology) 125I standard for air kerma strength calibration was taken into account as well as updated interaction cross-section data. Calculations were done for the competing model 6702 source for the purpose of comparison. The calculated dose-rate constants for the two seeds are 1.010 and 1.016 cGyh−1U−1 for the Symmetra and model 6702 seeds, respectively. The latter value deviates from the value, 1.039 cGyh−1U−1, recommended in the TG-43 report. The calculated radial dose function for the Symmetra new seed is more penetrating than that of the model 6711 seed (by 20% at 5 cm distance) but agrees closely (within statistical errors) with that of the model 6702 seed up to distances of 10 cm. The anisotropy function for the seed is also close to that for the 6702 seed with a tendency of somewhat more pronounced anisotropy (lower values at small angles from the longitudinal axis). Compared to the model 6711 seed, the Symmetra new seed is more isotropic. The anisotropy constants (the anisotropy function averaged with respect to angle and distance) for the three seed models are within 2%.

  • 23. Helmrot, Ebba
    et al.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Eckerdal, Olof
    Sandborg, Michael
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics .
    Use of an ivory wedge as a test phantom in analysing the influence of scattered radiation and tube potential on radiolographic contrast in intraoral dental radiography1993In: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 49, no 1, p. 125-127Article in journal (Refereed)
    Abstract [en]

    Contrast, noise and spatial resolution are fundamental physical concepts used to describe image quality. Contrast is one of the most important parameters in conventional film radiography. To facilitate the analysis of the radiographic contrast over a wide range of optical densities, an ivory wedge representative of objects with marked tissue discontinuities has been constructed. It can be used either separately or included within a PMMA phantom representing the middle face to simulate realistic scatter conditions. It is thus possible to investigate how radiographic contrast may be influenced by kV setting, beam filtration, type of generator (constant potential or single pulse) and type of film. The phantom has been used in optimising image quality relative to radiation risk, with the radiographic contrast being determined both theoretically and experimentally in terms of type of film (D and E speed), radiation and object contrast. The importance of controlling physical parameters when investigating image quality and how to achieve this using a well defined phantom is clearly demonstrated.

  • 24.
    Helmrot, Ebba
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Pettersson, Håkan
    Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Sandborg, Michael
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Faculty of Health Sciences.
    Nilsson Althen, Jonas
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Estimation of the dose to the unborn child at diagnostic X-ray examinations based on data registrerad in RIS/PACS2007In: European Radiology, ISSN 0938-7994, E-ISSN 1432-1084, Vol. 17, no 1, p. 205-209Article in journal (Refereed)
    Abstract [en]

    The aim of this work was to determine mean absorbed doses to the unborn child in common conventional X-ray and computed tomography (CT) examinations and to find an approach for estimating foetal dose based on data registered in the Radiological Information System/Picture Archive and Communication System (RIS/PACS). The kerma-area product (KAP) and CT dose index (CTDIvol) in common examinations were registered using a human-shaped female dosimetry phantom. Foetal doses, Df, were measured using thermoluminescent dosimeters placed inside the phantom and compared with calculated values. Measured foetal doses were given in relation to the KAP and the CTDIvol values, respectively. Conversion factor Df/KAP varies between 0.01 and 3.8 mGy/Gycm2, depending on primary beam position, foetus age and beam quality (tube voltage and filtration). Conversion factors Df/CTDIvol are in the range 0.02 – 1.2 mGy/mGy, in which the foetus is outside or within the primary beam. We conclude that dose conversion factors based on KAP or CTDIvol values automatically generated by the RIS/PACS system can be used for rapid estimations of foetal dose for common examination techniques.

  • 25.
    Helmrot, Ebba
    et al.
    Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Sandborg, Michael
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Center for Medical Image Science and Visualization, CMIV. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Faculty of Health Sciences.
    Eckerdal, Olle
    n/a.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Faculty of Health Sciences.
    Scientific  instrument for a controlled choice of optimal photon energy in intra-oral radiography1998In: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 80, no 1, p. 321-325Article in journal (Refereed)
    Abstract [en]

    Basic performance parameters are defined and analysed in order to optimise physical image quality in relation to the energy imparted to the patient in dental radiology. Air cavities were embedded in well-defined multimaterial, hard tissue phantoms to represent various objects in dento-maxillo-facial examinations. Basic performance parameters were: object contrast (C), energy imparted (_) to the patient, signal-to-noise ration (SNR), C2/_ (film) and (SNR)2/_ (digital imaging system) as functions of HVL (half-value layer), used to describe the photon energy spectrum. For the film receptor, the performance index C2/_ is maximum (optimal) at HVL values of 1.5-1.7 mm Al in the simulated Incisive, Premolar and Molar examinations. Other imaging tasks (examinations), not simulated here, may require other optimal HVL. For the digital imaging system (Digora) the performance index (SNR)2/_, theoretically calculated, indicates that a lower value of HVL is optimal than with film as receptor. However, due to the limited number of bits (8 bits) in the analogue to digital converter (ADC) contrast resolution is degraded and calls for use of higher photon energies (HVL). Customised optimisations with proper concern for patient category, type of examination, diagnostic task is the ultimate goal of this work. The conclusions stated above give some general advice on the appropriate choice of photon energy spectrum (HVL). In particular situations, it may be necessary to use more dose demanding kV settings (lower HVL) in order to get sufficient image quality for the diagnostic task.

  • 26.
    Hillman, Jan
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Neurosurgery. Östergötlands Läns Landsting, Reconstruction Centre, Department of Neurosurgery UHL.
    Sturnegk, Patrik
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Neurosurgery. Östergötlands Läns Landsting, Reconstruction Centre, Department of Neurosurgery UHL.
    Yonas, H
    Heron, J
    Sandborg, Michael
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Gunnarsson, Thorsteinn
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Neurosurgery. Östergötlands Läns Landsting, Reconstruction Centre, Department of Neurosurgery UHL.
    Mellergård, Per Erik
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Neurosurgery. Östergötlands Läns Landsting, Reconstruction Centre, Department of Neurosurgery UHL.
    Bedside monitoring of CBF with xenon-CT and a mobile scanner: A novel method in neurointensive care2005In: British Journal of Neurosurgery, ISSN 0268-8697, E-ISSN 1360-046X, Vol. 19, no 5, p. 395-401Article in journal (Refereed)
    Abstract [en]

    Combining previously independently established techniques our objective was to develop and evaluate a method for bedside qualitative assessment of cerebral blood flow in neurointensive care (NICU) patients. The CT-protocol was optimized using phantoms and comparing a mobile CT-scanner (Tomoscan-M, Philips) with two stationary CT scanners. Thirty-two per cent xenon was delivered with standard equipment (Enhancer 3000). Mean cortical flow in volunteers was 48 ml/min/100 g, with the mean vascular territorial flow varying between 45 and 66 ml/min/100 g. The potential clinical usefulness was illustrated in three patients with vasospasm following subarachnoid haemorrhage. Our conclusion is that quantitative bedside measurements of CBF can be repeatedly performed in an easy and safe way in a standard NICU-setting, using xenon-inhalation and a mobile CT-scanner. The method is useful for the decision-making, and is a good example of how the quality of multi-modality monitoring in the NICU can be developed and further diversified. © The Neurosurgical Foundation.

  • 27. Hunt, R
    et al.
    Dance, D
    Bakic, P
    Maidment, A
    Sandborg, Michael
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Ullman, Gustaf
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics.
    Alm-Carlsson, Gudrun
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Calculation of the properties of digital mammograms using a computer simulation2005In: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 114, no 1-3, p. 395-398Article in journal (Refereed)
    Abstract [en]

    A Mote Carlo computer model of mammography has been developed to study and optimise the performance of digital mammographic systems. The program uses high-resolution voxel phantoms to model the breast, which simulate the adipose and fibroglandular tissues, Cooper's ligaments, ducts and skin in three dimensions. The model calculates the dose to each tissue, and also the quantities such as energy imparted to image pixels, noise per image pixel and scatter-to-primary (S/P) ratios. It allows studies of the dependence of image properties on breast structure and on position within the image. The program has been calibrated by calculating and measuring the pixel values and noise for a digital mammographic system. The thicknesses of two components of this system were unknown, and were adjusted to obtain a good agreement between measurement and calculation. The utility of the program is demonstrated with the calculations of the variation of the S/P ratio with and without a grid, and of the image contrast across the image of a 50-mm-thick breast phantom. © The Author 2005. Published by Oxford University Press. All rights reserved.

  • 28. Hunt, R
    et al.
    Dance, D
    Pachoud, M
    Alm-Carlsson, Gudrun
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Sandborg, Michael
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Ullman, Gustaf
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics.
    Verdun, F
    Monte Carlo simulation of a mammographic test phantom2005In: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 114, no 1-3, p. 432-435Article in journal (Refereed)
    Abstract [en]

    A test phantom, including a wide range of mammographic tissue equivalent materials and test details, was imaged on a digital mammographic system. In order to quantify the effect of scatter on the contrast obtained for the test details, calculations of the scatter-to-primary ratio (S/P) have been made using a Monte Carlo simulation of the digital mammographic imaging chain, grid and test phantom. The results show that the S/P values corresponding to the imaging conditions used were in the range 0.084-0.126. Calculated and measured pixel values in different regions of the image were compared as a validation of the model and showed excellent agreement. The results indicate the potential of Monte Carlo methods in the image quality-patient dose process optimisation, especially in the assessment of imaging conditions not available on standard mammographic units. © The Author 2005. Published by Oxford University Press. All rights reserved.

  • 29. Hutton, B F
    et al.
    Olsson, Anna
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics.
    Som, Seu
    Erlandsson, Kjell
    Braun, M
    Reducing the influence of spatial resolution to improve quantitative accuracy in emission tomography: A comparison of potential strategies2006In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 569, no 2 SPEC. ISS., p. 462-466Article in journal (Refereed)
    Abstract [en]

    The goal of this paper is to compare strategies for reducing partial volume effects by either minimizing the cause (i.e. improving resolution) or correcting the effect. Correction for resolution loss can be achieved either by modelling the resolution for use in iterative reconstruction or by imposing constraints based on knowledge of the underlying anatomy. Approaches to partial volume correction largely rely on knowledge of the underlying anatomy, based on well-registered high-resolution anatomical imaging modalities (CT or MRI). Corrections can be applied by considering the signal loss that results by smoothing the high-resolution modality to the same resolution as obtained in emission tomography. A physical phantom representing the central brain structures was used to evaluate the quantitative accuracy of the various strategies for either improving resolution or correcting for partial volume effects. Inclusion of resolution in the reconstruction model improved the measured contrast for the central brain structures but still underestimated the true object contrast (∼0.70). Use of information on the boundaries of the structures in conjunction with a smoothing prior using maximum entropy reconstruction achieved some degree of contrast enhancement and improved the noise properties of the resulting images. Partial volume correction based on segmentation of registered anatomical images and knowledge of the reconstructed resolution permitted more accurate quantification of the target to background ratio for individual brain structures. © 2006 Elsevier B.V. All rights reserved.

  • 30. Håkansson, M
    et al.
    Båth, M
    Börjesson, S
    Kheddache, S
    Flinck, A
    Ullman, Gustaf
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics.
    Månsson, LG
    Nodule detection in digital chest radiography: Effect of nodule location2005In: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 114, no 1-3, p. 92-96Article in journal (Refereed)
    Abstract [en]

    Most detection studies in chest radiography treat the entire chest image as a single background or divided into the two regions parenchyma and mediastinum. However, the different parts of the lung show great variations in attenuation and structure, leading to different amounts of quantum noise and scattered radiation as well as different complexity. Detailed data on the difference in detectability in the different regions are of importance. The purpose of this study was to quantify the difference in detectability between different regions of a chest image. The chest X ray was divided into six different regions, where each region was considered to be uniform in terms of detectability. Thirty clinical chest images were collected and divided into the different regions. Simulated designer nodules with a full-width-at-fifth-maximum of 10 mm but with varying contrast were added to the images. An equal number of images lacking pathology were included and a receiver operating characteristic (ROC) study was conducted with five observers. Results show that the image contrast needed to obtain a constant value of Az (area under an ROC curve) differs by more than a factor of four between different regions. © The Author 2005. Published by Oxford University Press. All rights reserved.

  • 31.
    Karlsson, Henrik
    et al.
    Med radiofysik IMV.
    Angland, Erik
    Linköping University, Department of Medicine and Care.
    Davidsson, Anette
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Clinical Physiology. Östergötlands Läns Landsting, Heart Centre, Department of Clinical Physiology.
    Gustafsson, Agneta
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Pettersson, Håkan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Measurements of airborne 99mTc to technologists during technegas ventilation studies2006In: EANM,2006, 2006Conference paper (Other academic)
  • 32. Komaguchi, K
    et al.
    Matsubara, Y
    Shiotani, M
    Gustafsson, Håkan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics.
    Lund, Eva
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Lund, Anders
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Chemical Physics .
    An ESR and ENDOR study of irradiated 6Li-formate2007In: Spectrochimica Acta Part A - Molecular and Biomolecular Spectroscopy, ISSN 1386-1425, E-ISSN 1873-3557, Vol. 66, no 3, p. 754-760Article in journal (Refereed)
    Abstract [en]

    Lithium formate (6LiOOCH·H2O), 95% 6Li enrichment, combined with an exchange of crystallization water with D2O was investigated. The ESR spectrum of the radiation induced free radicals stable at room temperature consists of a singlet with a narrow line width, 0.92 mT. 6Li has smaller magnetic moment and nuclear spin, which resulted in the narrower line width accompanied with an increase in peak amplitude. In comparison with lithium formate with natural isotopic composition, 6Li (7.5%, I = 1) and 7Li (92.5%, I = 3/2), the sensitivity was increased by a factor of two. With optimised spectrometer settings 6Li formate had seven times higher sensitivity compared to alanine. Therefore this material is proposed as a dosimeter material in a dose range down to 0.1 Gy. The g and the 13C-hyperfine (hf) tensors of the CO2- radical anion, major paramagnetic products, were evaluated to be g = (2.0037, 1.9975, 2.0017), and A(13C) = (465.5, 447.5, 581.3) MHz for polycrystalline samples at room temperature. Furthermore, the 1H-hf and 6Li-hf tensors observed for the surroundings of CO2- by ENDOR technique were in fairly good agreement with DFT calculations. The CO2- radicals are found to be so stable that the formate is applicable to the ESR dosimetry, because of fully relaxing in a fully relaxed geometrical structure of the CO2- component and remaining tight binding with the surroundings after the H atom detachment from HCO2-. © 2006 Elsevier B.V. All rights reserved.

  • 33. Lillhök, Jan Erik
    et al.
    Grindborg, Jan-Erik
    Lindborg, Lennart
    Gudowska, Irena
    Alm-Carlsson, Gudrun
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Söderberg, Jonas
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics.
    Kopec, M
    Medin, Joakim
    Nanodosimetry in a clinical neutron therapy beam using the variance-covariance method and Monte Carlo simulations2007In: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 52, no 16, p. 4953-4966Article in journal (Refereed)
    Abstract [en]

    Nanodosimetric single-event distributions or their mean values may contribute to a better understanding of how radiation induced biological damages are produced. They may also provide means for radiation quality characterization in therapy beams. Experimental nanodosimetry is however technically challenging and Monte Carlo simulations are valuable as a complementary tool for such investigations. The dose-mean lineal energy was determined in a therapeutic p(65)+Be neutron beam and in a 60Co γ beam using low-pressure gas detectors and the variance-covariance method. The neutron beam was simulated using the condensed history Monte Carlo codes MCNPX and SHIELD-HIT. The dose-mean lineal energy was calculated using the simulated dose and fluence spectra together with published data from track-structure simulations. A comparison between simulated and measured results revealed some systematic differences and different dependencies on the simulated object size. The results show that both experimental and theoretical approaches are needed for an accurate dosimetry in the nanometer region. In line with previously reported results, the dose-mean lineal energy determined at 10 nm was shown to be related to clinical RBE values in the neutron beam and in a simulated 175 MeV proton beam as well. © 2007 IOP Publishing Ltd.

  • 34.
    Lund, Eva
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Gustafsson, Håkan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics.
    Danilczuk, M
    Sastry, M
    Lund, Anders
    Linköping University, Department of Physics, Chemistry and Biology.
    Vestad, T-A
    Malinen, E
    Hole, E O
    Sagstuen, E
    Formates and dithionates: sensitive EPR dosimeter materialsfor radiation therapy2004In: Applied Radiation and Isotopes, ISSN 0969-8043, E-ISSN 1872-9800, Vol. 62, p. 317-324Article in journal (Refereed)
  • 35.
    Lund, Eva
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Department of Medicine and Care, Radiation Physics.
    Gustafsson, Håkan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Department of Medicine and Care, Radiation Physics.
    Danilczuk, M
    Sastry, MD
    Lund, Anders
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Chemical Physics .
    Compounds of Li-6 and natural Li for EPR dosimetry in photon/neutron mixed radiation fields2004In: Spectrochimica Acta Part A - Molecular and Biomolecular Spectroscopy, ISSN 1386-1425, E-ISSN 1873-3557, Vol. 60, no 6, p. 1319-1326Article in journal (Refereed)
    Abstract [en]

    Formates and dithionates of Li-6, enriched and Li-7 in natural composition of Li offer a possibility to measure the absorbed dose from photons and thermal neutrons in a mixed radiation field for instance at a boron neutron capture therapy (BNCT) facility. Tests with formates and dithionates of enriched 6Li and lithium compounds with natural composition have been performed at the BNCT facility at Studsvik, Sweden. Irradiations have been performed at 3 cm depth in a Perspex phantom in a fluence rate of thermal neutrons 1.8 x 10(9) n cm(-2) s(-1). The compounds were also irradiated in a pure X-ray field from a 4 MV linear accelerator at 5 cm depth in a phantom with accurately determined absorbed doses. The signal intensity and shape was investigated within 3 h after the irradiation. A single line spectrum attributed to the CO2- radical was observed after irradiation of lithium formate. An increase in line width occurring after neutron irradiation in comparison with photon irradiation of the Li-6 sample was attributed to dipolar broadening between CO2- radicals trapped in the tracks of the alpha particles. A spectrum due to the SO3- radical anion was observed after irradiation of lithium dithionate. The signal amplitude increased using the Li-6 in place of the Li with natural composition of isotopes, in studies with low energy X-ray irradiation. Due to the decreased line width, caused by the difference in g(N) and I between the isotopes, the sensitivity with Li-6 dithionate may be enhanced by an order of magnitude compared to alanine dosimetry. After comprehensive examination of the different combinations of compounds with different amounts of Li-6 and Li-7 regarding dosimetry, radiation chemistry and EPR properties these dosimeter material might be used for dose determinations at BNCT treatments and for biomedical experiments. Interesting properties of the radical formation might be visible due to the large difference in ionization density of neutrons compared to photons. (C) 2003 Elsevier B.V. All rights reserved.

  • 36.
    Lund, Eva
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Wirell, Staffan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology.
    Salerud, Göran
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Basgruppsträffar gemensamma för teknologer och lärarstuderande inom ämnet "Radiologiska bilder"1997In: CUP-konferens,1997, 1997Conference paper (Other academic)
  • 37.
    Lundberg, Peter
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Virtual Biochemistry Lab (NMR laboratory) http: //nobelprize.org/chemistry/educational/vbl/index.html2001Other (Other (popular science, discussion, etc.))
  • 38.
    Malusek, Alexandr
    et al.
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Hedtjärn, Håkan
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Williamson, Jeffrey
    Department of Radiation Oncology, Virginia Commonwealth University, Richmond, USA.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Efficiency gain in Monte Carlo simulations using correlated sampling. Application to calculations of absorbed dose distributions in a brachytherapy geometryManuscript (preprint) (Other academic)
    Abstract [en]

    The distribution of an estimate of the efficiency gain of the Monte Carlo method based on correlated sampling was simulated, the corresponding 95 % confidence interval was evaluated, and the bias of the estimate was determined. The concept of batches which normalize distributions of scored quantities was used. It was found that the distribution of the estimate of the efficiency gain was sensitive to outliers and could not be described by the F distribution, Two other estimates of an alternative definition of the efficiency gain were tested. They were more robust but their applicability was limited due to their bias when batch averages were not normally distributed.

  • 39. Milakovic, M
    et al.
    Berg, G
    Eggertsen, R
    Nyström, E
    Olsson, Anna
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics.
    Larsson, A
    Hansson, M
    Determination of intrathyroidal iodine by X-ray fluorescence analysis in 60- to 65-year olds living in an iodine-sufficient area2006In: Journal of Internal Medicine, ISSN 0954-6820, E-ISSN 1365-2796, Vol. 260, no 1, p. 69-75Article in journal (Refereed)
    Abstract [en]

    Objectives. X-ray fluorescence (XRF) is a non-invasive method for determining the iodine content of the thyroid gland in vivo. In spite of the obvious clinical value of such a method in situations of iodine deficiency or iodine overload, the method has not so far been widely used. The objective was to investigate the applicability of the XRF method in a larger number of subjects. Design and subjects. The study comprised 37 individuals, aged 60-65 years, who had spent their entire life with iodine supplementation through iodinated table salt. Individuals with (previous) thyroid disease were excluded. The individual thyroid function had previously been evaluated by measurements of thyroid-related hormones, thyroid volume and 131-Iodine (131I) uptake which indicated a sufficient iodine intake of the population in the area. Iodine in the right thyroid lobe in each subject was examined using XRF. Results. The mean thyroid iodine concentration was 0.4 mg mL-1, corresponding to a mean total iodine content of 5.2 mg (range 0.9-20.2). There was a pronounced difference between individuals. No correlation was found between iodine concentration and 131I uptake or thyroid volume. Neither was iodine content and 131I uptake correlated. Conclusions. In a population living under iodine-sufficient conditions, a large variation of iodine stored in the thyroid is compatible with euthyroidism. Determination of the iodine pool by XRF investigation is feasible in a clinical setting and the method offers a unique possibility to study the intrathyroidal iodine pool in subjects with thyroid disease. The low radiation dose enables the use of the method in pregnant women and also in young individuals. © 2006 Blackwell Publishing Ltd.

  • 40. Moores, B
    et al.
    Mattsson, S
    Månsson, LG
    Panzer, W
    Regulla, D
    Dance, D
    Alm-Carlsson, Gudrun
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Verdun, F
    Buhr, E
    Hoeschen, C
    RADIUS - Closing the circle on the assessment of imaging performance2005In: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 114, no 1-3, p. 450-457Article in journal (Refereed)
    Abstract [en]

    The RADIUS (Radiological Imaging Unification Strategy) project addresses the assessment of image quality in terms of both physical and clinically relevant measures. The aim is to unify our understanding of both types of measure as well as the numerous underlying factors that play a key role in the assessments of imaging performance. In this way it is expected to provide a solid basis for the improvement in radiological safety management, where not only radiation risks are considered but also diagnostic risks of incorrect clinical outcomes (i.e. false positive/false negative). The project has applied a variety of relevant experimental and theoretical methods to this problem, which is generic to medical imaging as a whole. Digital radiography of the chest and the breast has been employed as the clinical imaging domain vehicles for the study. The project addressed the problem from the following directions: role and relevance of pathology, human observer studies including receiver operating characteristics, image quality criteria analysis, structural noise analysis, physical measurements on clinical images, physical measurements on imaging system, modelling of imaging system, modelling of visual processes, modelling of doses delivered and IT-based scientific support strategies. This paper presents an overview of the main outcomes from this project and highlights how the research outcomes actually apply to the real world. In particular, attention will be focused on new and original findings and methods and techniques that have been developed within the framework of the project. The relevance of the project's outcomes to future European research will also be presented. © The Author 2005. Published by Oxford University Press. All rights reserved.

  • 41.
    Mångård, Måns
    et al.
    Linköping University, Department of Mechanical Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Hammersberg, Peter
    Linköping University, Department of Mechanical Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Sandborg, Michael
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Modelling of an X-ray image-intensifier-based radiography system1998In: Journal of X-Ray Science and Technology, ISSN 0895-3996, E-ISSN 1095-9114, Vol. 8, no 1, p. 31-50Article in journal (Refereed)
    Abstract [en]

    A model will be proposed for predicting the expected value and variance of the measured signal-level in collected radiographic images obtained with an image-intensifier-based X-ray radiography system. The model parameters are determined from both theoretical and experimental data and incorporate all parameters that can be varied by the system operator, except CCD-camera readout rate. The proposed model predicts the expected value and variance of the grey-level in the output image with high accuracy. It is also shown that it is very important to compensate for the inhomogeneous pixel sensitivity when comparing the variance of the signal-level in a pixel from sequentially collected images with the variance determined in a single image.

  • 42.
    Nilsson Althén, Jonas
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Surgery in Östergötland.
    Automatic tube-current modulation in CT-A comparison between different solutions2005In: Optimisation Strategies in medical x-ray imaging,2004, Oxford: Oxford University Press , 2005, p. 308-Conference paper (Refereed)
  • 43.
    Nilsson, Håkan
    et al.
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Matscheko, G.
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lund, Eva
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Alm Carlsson, G.
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Measurements of energy spectra from high dose rate 192Ir sources with a compton scattering spectrometer1994In: Measurement assurance in dosimetry: Proceedings of an International Symposium on Measurement Assurance in Dosimetry, 1994, p. 289-297Conference paper (Other academic)
    Abstract [en]

    A Compton scattering spectrometer has been used for spectral measurement of high dose rate (HDR) 192Ir sources. On the basis of the Compton formula a measured distribution of scattered photons is used for the calculation of the primary spectrum leaving the source. The two main reasons for measuring the photon energy distribution from such HDR sources are, firstly, to obtain accurate input for Monte Carlo calculations of the dose distribution and, secondly, to calibrate ionization chambers. The lack of spectral information causes calibration laboratories great difficulties in such work. A third possible reason concerns quality assurance with respect to source impurities, etc. The measured spectrum shows good agreement with the spectrum expected from theoretical considerations.

  • 44.
    Nilsson, Jonas
    Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Surgery in Östergötland. Linköping University, The Institute of Technology.
    Automatic tube-current modulation in CT - A comparison between different solutions2005In: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 114, no 1-3, p. 308-312Article in journal (Refereed)
    Abstract [en]

    In this study, tube-current modulation systems on two different CT equipments have been evaluated: Care Dose from Siemens and Auto mA from GE Medical Systems. Care Dose modulates the tube current in the xy-plane during rotation whereas Auto mA modulates the tube current in the z-direction. xy-Plane modulation was investigated by using an elliptic Poly-methylmethacrylate phantom and a CTDI-ion chamber. To investigate modulation in the z-direction, an anthropomorphic dosimetry phantom (Atom) was used. Tests performed with and without tube-current modulation were compared with respect to absorbed dose and image quality. In the anthropomorphic phantom measurements, the dose savings were 15% using Care Dose and the photon starvation artefacts were negligible. Using Auto mA the absorbed dose depends on the chosen noise level. Image noise becomes more constant throughout the patient but photon starvation artefacts remain. We conclude that the two tube-current modulation techniques show different dose advantages and image quality artefacts. © The Author 2005. Published by Oxford University Press. All rights reserved.

  • 45.
    Norrman, Eva
    et al.
    Örebro.
    Gårdestig, Magnus
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics.
    Persliden, Jan
    Örebro.
    Geijer, Håkan
    Örebro.
    A clinical evaluation of the image quality computer program, CoCIQ2005In: Journal of digital imaging, ISSN 0897-1889, E-ISSN 1618-727X, Vol. 18, no 2, p. 138-144Article in journal (Refereed)
    Abstract [en]

    To provide an objective way of measuring image quality, a computer program was designed that automatically analyzes the test images of a contrast-detail (CD) phantom. The program gives a quantified measurement of image quality by calculating an Image Quality Figure (IQF). The aim of this work was to evaluate the program and adjust it to clinical situations in order to find the detectable level where the program gives a reliable figure of the contrast resolution. The program was applied on a large variety of images with lumbar spine and urographic parameters, from very low to very high image qualities. It was shown that the computer program produces IQFs with small variations and there were a strong linear statistical relation between the computerized evaluation and the evaluation performed by human observers (R 2 = 0.98). This method offers a fast and easy way of conducting image quality evaluations. Copyright © 2005 by SCAR (Society for Computer Applications in Radiology).

  • 46.
    Norén, Bengt
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology UHL.
    Lundberg, Peter
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Ressner, Marcus
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Wirell, Staffan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology.
    Almer, Sven
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Molecular and Clinical Medicine, Gastroenterology and Hepatology. Östergötlands Läns Landsting, Centre for Medicine, Department of Endocrinology and Gastroenterology UHL.
    Smedby, Örjan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology UHL. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Absolute quantification of human liver metabolite concentrations by localized in vivo 31P NMR spectroscopy in diffuse liver disease2005In: European Radiology, ISSN 0938-7994, E-ISSN 1432-1084, Vol. 15, no 1, p. 148-157Article in journal (Refereed)
    Abstract [en]

    Phosphorus-31 NMR spectroscopy using slice selection (DRESS) was used to investigate the absolute concentrations of metabolites in the human liver. Absolute concentrations provide more specific biochemical information compared to spectrum integral ratios. Nine patients with histopathologically proven diffuse liver disease and 12 healthy individuals were examined in a 1.5-T MR scanner (GE Signa LX Echospeed plus). The metabolite concentration quantification procedures included: (1) determination of optimal depth for the in vivo measurements, (2) mapping the detection coil characteristics, (3) calculation of selected slice and liver volume ratios using simple segmentation procedures and (4) spectral analysis in the time domain. The patients had significantly lower concentrations of phosphodiesters (PDE), 6.3±3.9 mM, and ATP-β, 3.6±1.1 mM, (P<0.05) compared with the control group (10.0±4.2 mM and 4.2±0.3 mM, respectively). The concentrations of phosphomonoesters (PME) were higher in the patient group, although this was not significant. Constructing an anabolic charge (AC) based on absolute concentrations, [PME]/([PME] + [PDE]), the patients had a significantly larger AC than the control subjects, 0.29 vs. 0.16 (P<0.005). Absolute concentration measurements of phosphorus metabolites in the liver are feasible using a slice selective sequence, and the technique demonstrates significant differences between patients and healthy subjects.

  • 47.
    Olsson, Anna
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics.
    Davidsson, Anette
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Clinical Physiology. Östergötlands Läns Landsting, Heart Centre, Department of Clinical Physiology.
    Pettersson, Håkan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Gustafsson, Agneta
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Finger doses from handling radioative isotopes at a Nuclear Medicine department2006In: EANM,2006, 2006Conference paper (Other academic)
  • 48.
    Olsson, Anna
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics.
    Gustafsson, Agneta
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Hellerström, Sabine
    Klinsik Fysiologi HC.
    Granerus, Göran
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Clinical Physiology. Östergötlands Läns Landsting, Heart Centre, Department of Clinical Physiology.
    World Federation of Nuclear Medicine and Biology Santiago, Chile, 20022002In: World Federation of Nuclear Medicine and Biology Santiago, Chile 2002,2002, 2002Conference paper (Other academic)
    Abstract [en]

       

  • 49.
    Olsson, Sara
    et al.
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lund, Eva
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Erickson, R.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Health Sciences.
    Dose response and fading characteristics of an Alanine-Agarose gel1996In: Applied Radiation and Isotopes, ISSN 0969-8043, E-ISSN 1872-9800, Vol. 47, no 11-12, p. 1211-1217Article in journal (Refereed)
    Abstract [en]

    The dose response of an alanine-agarose gel, analyzed by ESR spectrometry, and the stability of the radiation-induced free radicals have been investigated. The stability of the ESR signal is higher for dosimeter samples analyzed at 77 K than for dried samples, analyzed at room-temperature. The dose response is linear to within ±2% in the absorbed dose interval 2–100 Gy. The variations in spectral line shape were analyzed at temperatures between 77 and 270 K. The experimental ESR spectrum at 77 K was compared with a simulated spectrum of polycrystals of L-α-alanine.

  • 50.
    Persliden, Jan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Patient and staff doses in interventional X-ray procedures in Sweden2005In: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 114, no 1-3, p. 150-157Article in journal (Refereed)
    Abstract [en]

    Interventional procedures in radiology are of concern because of irradiation doses to the patients and also to the staff. A questionnaire sent to all radiology departments in Sweden showed that 11,350 procedures were performed annually 1996-1997. In a follow-up study, data from patient procedures were recorded. Type of procedure, dose-area product (DAP) values, fluoroscopy times, number of radiography series and patient data were recorded. For some procedures, staff doses were measured. Skin doses to the patients were also calculated where possible. Results: A total of 380 interventional procedures were described. The procedures were grouped into cranial, neck and thorax, intestine and abdominal, uro/genital and pelvis and extremities. DAP and fluoroscopy times (mean values) were 200 Gy cm2 for 57 min, 57 Gy cm2 for 16 min, 270 Gy cm2 for 35 min, 212 Gy cm2 for 37 min, 67 Gy cm2 for 21 min, respectively, for the named procedures. Maximum patient skin doses exceeded threshold values for erythema (2 Gy) in cranial, neck/thorax and intestine/abdominal procedures. Effective doses to the patients could be high, 200 mSv. Conclusion: It was found that patient doses could exceed threshold values for skin erythema (2 Gy) and temporary epilation (3 Gy). Hence, the procedures require immediate improvement. © The Author 2005. Published by Oxford University Press. All rights reserved.

12 1 - 50 of 79
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf