liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Gustafsson, Stig-Inge
    Linköping University, Department of Management and Engineering, Wood Technology. Linköping University, The Institute of Technology.
    The Strength Properties of Swedish Oak and Beech2010In: Drewno, ISSN 1644-3985, Vol. 53, no 183, p. 67-83Article in journal (Refereed)
    Abstract [en]

    Because of their economic impact most research on wood in Sweden is aimed at our needle-leaved species, i.e. pine and spruce. Sawmills and other industrial enterprises using these conifers are also in vast majority, both in number of employees and number of companies. However, there is a viable industrial branch in Sweden, i.e. furniture companies, dealing with broad-leaved species such as oak, birch, and alder. Such industries often import all the wood they use, even if the same type of wood grows in the vicinity. In order to make the Swedish broad-leaved trees more interesting to the wood manufacturing sector, we examined the strength properties of some common Swedish woods, viz. oak and beech. The result shows that our oak specimens had a modulus of elasticity of 12.243 MPa measured by using four-point bending. So-called the Young’s modulus was 11.761 MPa for tension and 15.610 MPa for compression in the fibre direction, i.e. there was a very high difference. The stress just before rupture was measured to 85 MPa for tension and 76 MPa for compression, i.e. there was a surprisingly small difference. For beech, our corresponding values were 13.017 MPa for four-point bending, the Young’s modulus during tension was13.954 MPa and 130.4 MPa in maximum stress, whilst under compression these values were 13.101 MPa and 84 MPa, respectively.

  • 2.
    Johansen, Kerstin
    et al.
    Linköping University, Department of Management and Engineering, Wood Technology. Linköping University, The Institute of Technology.
    Eklöf, David
    Linköping University, Department of Management and Engineering, Wood Technology. Linköping University, The Institute of Technology.
    Challenges for Swedish Wood Furniture Manufacturers: Its Handcraft Tradition versus Modern Production Technologies2009Conference paper (Refereed)
    Abstract [en]

    The Swedish wood furniture manufacturers are facing an increasing competitiveness from large import of furniture to the Swedish market. One way to meet this is to combine traditional handicraft with a change towards more CNC machines and automation in the production lines. This paper describes a performed case study in the Swedish furniture industry based on interviews and observations from walk the production in all companies.

    The companies illustrate three main types of production systems; 1) Complete manufacturer: Nearly all manufacturing and final assembly in-house; 2) Cross-over manufacturer: Some components from suppliers, manufacturing and final assembly in-house; 3) Collaborative depending manufacturer: All components from suppliers and final assembly in-house. This case study has identified a gap in the more handicraft intense furniture industry in Sweden which is the connection between the furniture design – product development – manufacturing.

  • 3.
    Johansen, Kerstin
    et al.
    Linköping University, Department of Management and Engineering, Wood Technology. Linköping University, The Institute of Technology.
    Lahdo, Gabi
    Linköping University, Department of Management and Engineering. Linköping University, The Institute of Technology.
    Elo, Kristofer
    Linköping University, Department of Management and Engineering, Production Engineering. Linköping University, The Institute of Technology.
    Furniture Manufacturing: Aspects on Assembling Chairs with a Two-Armed Robot2010In: 3rd CIRP Conference on Assembly Technologies and Systems: Responsive, customer demand driven, adaptive assembly / [ed] Terje K. Lien, Trondheim. Norway: Tapir Akademisk Forlag, 2010, p. 157-163Conference paper (Other academic)
  • 4.
    Liljengren, Erik
    Linköping University, Department of Management and Engineering, Wood Technology. Linköping University, Department of Management and Engineering.
    Adaptive sawing: - Yield of a concept in reality2009Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Glue board is the base for much solid wood furniture produced by the IKEA-owned companySwedwood. Glue board is glued together from lamellas which can be produced in different waysbut in all cases is produced from boards coming from a saw-mill. In a saw-mill there aredifferent techniques for producing boards from logs. This thesis is about the Adaptive sawingconcept and its implementation at the Swedwood site in Kostomuksha. The idea with the conceptis to raise the output from the raw material, the yield. This is partly achieved by edging away islittle as possible from the boards in the saw-mill. The boards in the saw-mill are sawn in a waynot unlike through-sawing. When brought to the glue-board factory they are scanned in order tooptimise how to rip out as much lamellas as possible. The ripped lamellas are then cross-cut intodifferent sizes which later are glued to glue board. The objective of this thesis is to examine theyield from log to glue board for the log classes 135-148 mm and 110-120 mm, to try to improveit and to identify problem factors.In order to achieve that it was necessary to be sure of the volume figures at all stages. Theincoming volume was given by the scanner at the log sorting; effort was therefore put down tomake sure the figures could be trusted. For the smaller log class the logs were instead measuredby hand and the volume was calculated. The logs were then sawn in the saw-mill. This was donewith a low production speed and some problems were noted compared with when sawing with astandard technique. The absence of edging was the main reason for these problems. The saw-millline was deemed inappropriate for sawing the smallest log class but could handle the 135 -148mm class and the yield for that class was in line with what could be expected.In the lamella production line some minor problems were noted and the boards from the fourdifferent batches from the 135 – 148 mm log class got different yields mainly due to differencesin wood quality. The yield from log to glue board for these four batches varied from 17.6 % to21.5 % with an average at 19.3 %. The yield was lower than what was achieved for earlieradaptive sawing test batches on other places. Those tests were however done on other diameterclasses and with material that was slightly different than the one in Kostomuksha. Simulationswere done to check how much the yield could be raised if other lamella widths than just thestandard 46 mm lamella width was used. A raise to an average of 20.9 % could then be expectedwhen using the lamella widths 46, 55 and 60 mm.A similar simulation was done for the adaptive material that was produced from the 110 – 120mm log class. The total yield for that material rose from 19.4 % to 22.4 % when using morelamella widths. Lamellas from this material were tested as there was fear, that they would notmeet the standards for glue board production. This did however not prove to be the case. To usethe lamella production for producing such material is however not ideal, since a very smallvolume is produced.

    Download full text (pdf)
    Adaptive sawing master
  • 5.
    Liljengren, Erik
    Linköping University, Department of Management and Engineering, Wood Technology. Linköping University, Department of Management and Engineering.
    Adaptive sawing: Yield of a concept in reality2009Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Glue board is the base for much solid wood furniture produced by the IKEA-owned company Swedwood. Glue board is glued together from lamellas which can be produced in different waysbut in all cases is produced from boards coming from a saw-mill. In a saw-mill there aredifferent techniques for producing boards from logs. This thesis is about the Adaptive sawingconcept and its implementation at the Swedwood site in Kostomuksha. The idea with the conceptis to raise the output from the raw material, the yield. This is partly achieved by edging away islittle as possible from the boards in the saw-mill. The boards in the saw-mill are sawn in a waynot unlike through-sawing. When brought to the glue-board factory they are scanned in order tooptimise how to rip out as much lamellas as possible. The ripped lamellas are then cross-cut intodifferent sizes which later are glued to glue board. The objective of this thesis is to examine theyield from log to glue board for the log classes 135-148 mm and 110-120 mm, to try to improveit and to identify problem factors.

    In order to achieve that it was necessary to be sure of the volume figures at all stages. Theincoming volume was given by the scanner at the log sorting; effort was therefore put down tomake sure the figures could be trusted. For the smaller log class the logs were instead measuredby hand and the volume was calculated. The logs were then sawn in the saw-mill. This was donewith a low production speed and some problems were noted compared with when sawing with astandard technique. The absence of edging was the main reason for these problems. The saw-millline was deemed inappropriate for sawing the smallest log class but could handle the 135 -148mm class and the yield for that class was in line with what could be expected.

    In the lamella production line some minor problems were noted and the boards from the fourdifferent batches from the 135 – 148 mm log class got different yields mainly due to differencesin wood quality. The yield from log to glue board for these four batches varied from 17.6 % to21.5 % with an average at 19.3 %. The yield was lower than what was achieved for earlieradaptive sawing test batches on other places. Those tests were however done on other diameterclasses and with material that was slightly different than the one in Kostomuksha. Simulationswere done to check how much the yield could be raised if other lamella widths than just thestandard 46 mm lamella width was used. A raise to an average of 20.9 % could then be expectedwhen using the lamella widths 46, 55 and 60 mm.

    A similar simulation was done for the adaptive material that was produced from the 110 – 120mm log class. The total yield for that material rose from 19.4 % to 22.4 % when using morelamella widths. Lamellas from this material were tested as there was fear, that they would notmeet the standards for glue board production. This did however not prove to be the case. To use the lamella production for producing such material is however not ideal, since a very smallvolume is produced.

    Download full text (pdf)
    Adaptive sawing master thesis
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf